Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285259586> ?p ?o ?g. }
Showing items 1 to 59 of
59
with 100 items per page.
- W4285259586 endingPage "52" @default.
- W4285259586 startingPage "42" @default.
- W4285259586 abstract "For automatic classification tasks, computational linguistic examination of a literary text is challenging. Literary content such as poetry can be categorized based on emotion, theme, poet, hidden message, etc. In this work, we have proposed a theme-based deep Punjabi poetry classifier. The dataset comprises over 2000 poetries divided into 8 subcategories: nature, Festival, Linguistic, Patriotic, Romantic, Relation, Philosophy, and Spiritual. Tokenization, stop word removal, stemming, and particular symbol removal were among the pre-processing sub-phases applied to these poetries. We coined the phrase ‘Bag of Poetry Words’ (BOPW) for nearly 32000 of such extracted unigram tokens. Term frequency (TF) weighting scheme was used for weighing extracted tokens. Four different textual features (lexical, lexical with syntactic, lexical with semantic, and a super hybrid) were tested to develop a classifier based on poetry elements. Adaboost (AB), Bagging (BG), Bi-directional Long Short Term Memory (Bi-LSTM), C4.5, Gradient Boosting (GB), Hyperpipes (HP), K-nearest neighbor (KNN), Long Short Term Memory (LSTM), Naïve Bayes (NB), PART, Random Forest (RF), Support Vector Machine (SVM), Voting Intervals Interval (VFI), and ZeroR algorithms have experimented with different textual features. These 14 machine learning algorithms were divided into baseline learners, ensemble learners, and deep learners. The results revealed that the best performing algorithm was SVM from baseline learners, and the highest accuracy (76.14%) was achieved by incorporating a super hybrid textual feature. The best performing algorithm was GB from ensemble learners, with an accuracy of 64.10%. Bi-LSTM reported the highest accuracy of 80.32% using super hybrid features from deep learners." @default.
- W4285259586 created "2022-07-14" @default.
- W4285259586 creator A5008259117 @default.
- W4285259586 creator A5055903884 @default.
- W4285259586 date "2022-01-01" @default.
- W4285259586 modified "2023-09-25" @default.
- W4285259586 title "Deep Learning and Super-Hybrid Textual Feature Based Multi-category Thematic Classifier for Punjabi Poetry" @default.
- W4285259586 cites W1589623824 @default.
- W4285259586 cites W1607810611 @default.
- W4285259586 cites W2003066782 @default.
- W4285259586 cites W2133990480 @default.
- W4285259586 cites W2151177065 @default.
- W4285259586 cites W2508762758 @default.
- W4285259586 cites W3006147811 @default.
- W4285259586 cites W3030753999 @default.
- W4285259586 cites W3051883470 @default.
- W4285259586 cites W312359788 @default.
- W4285259586 cites W80941591 @default.
- W4285259586 doi "https://doi.org/10.1007/978-981-19-2719-5_5" @default.
- W4285259586 hasPublicationYear "2022" @default.
- W4285259586 type Work @default.
- W4285259586 citedByCount "0" @default.
- W4285259586 crossrefType "book-chapter" @default.
- W4285259586 hasAuthorship W4285259586A5008259117 @default.
- W4285259586 hasAuthorship W4285259586A5055903884 @default.
- W4285259586 hasConcept C119857082 @default.
- W4285259586 hasConcept C12267149 @default.
- W4285259586 hasConcept C154945302 @default.
- W4285259586 hasConcept C204321447 @default.
- W4285259586 hasConcept C28490314 @default.
- W4285259586 hasConcept C41008148 @default.
- W4285259586 hasConcept C52001869 @default.
- W4285259586 hasConcept C95623464 @default.
- W4285259586 hasConceptScore W4285259586C119857082 @default.
- W4285259586 hasConceptScore W4285259586C12267149 @default.
- W4285259586 hasConceptScore W4285259586C154945302 @default.
- W4285259586 hasConceptScore W4285259586C204321447 @default.
- W4285259586 hasConceptScore W4285259586C28490314 @default.
- W4285259586 hasConceptScore W4285259586C41008148 @default.
- W4285259586 hasConceptScore W4285259586C52001869 @default.
- W4285259586 hasConceptScore W4285259586C95623464 @default.
- W4285259586 hasLocation W42852595861 @default.
- W4285259586 hasOpenAccess W4285259586 @default.
- W4285259586 hasPrimaryLocation W42852595861 @default.
- W4285259586 hasRelatedWork W2141501114 @default.
- W4285259586 hasRelatedWork W2539163683 @default.
- W4285259586 hasRelatedWork W2595988085 @default.
- W4285259586 hasRelatedWork W2979979539 @default.
- W4285259586 hasRelatedWork W3105251098 @default.
- W4285259586 hasRelatedWork W3127425528 @default.
- W4285259586 hasRelatedWork W3168994312 @default.
- W4285259586 hasRelatedWork W4205958290 @default.
- W4285259586 hasRelatedWork W4311106074 @default.
- W4285259586 hasRelatedWork W4313549251 @default.
- W4285259586 isParatext "false" @default.
- W4285259586 isRetracted "false" @default.
- W4285259586 workType "book-chapter" @default.