Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285261796> ?p ?o ?g. }
- W4285261796 endingPage "56439" @default.
- W4285261796 startingPage "56427" @default.
- W4285261796 abstract "Massive Multiple-Input Multiple-Output (MaMIMO) communication networks are recently being investigated for hltheir high potential for localisation services. This is enabled by the high-dimensional channel state information (CSI) captured by the many antennas in the system. Previously, it has been shown that these systems can achieve a very high localisation accuracy. However, many challenges still remain, we identified two of them. First, the recent trend towards cell-free MaMIMO with many highly distributed Access Points (AP), leads to the question of how this impacts the localisation methods. Current localisation methods process the signals in a central processing unit (CPU), resulting in a high fronthaul requirement when deploying these algorithms in a distributed network, limiting the deployment and scalability. Second, there exists a trade-off between using model-driven and data-driven localisation methods. In this work, we propose two new localisation methods which employ a distributed processing strategy and compare them against two centralised localisation methods. In addition, the four analysed methods explore the trade-off between being model- and data-driven. Moreover, the proposed ML-MUSIC method blurs the lines between the two by combining Machine Learning and traditional signal processing. Next to comparing the localisation accuracy, we evaluate the performance in a dynamic setting, the scalability and fronthaul requirement of the methods. The proposed Machine Learning-enhanced Multiple Signals Classification method, ML-MUSIC, reaches a median error of 34.2 mm on the test set while only using 500 training samples. Due to ML-MUSICs distributed design, the fronthaul throughput requirement is reduced 1200-fold in comparison to the centralised methods. Furthermore, ML-MUSIC has the lowest computational complexity of all analysed methods, making it an ideal method to localise users in upcoming distributed cell-free MaMIMO networks." @default.
- W4285261796 created "2022-07-14" @default.
- W4285261796 creator A5018134056 @default.
- W4285261796 creator A5036957045 @default.
- W4285261796 creator A5083014277 @default.
- W4285261796 date "2022-01-01" @default.
- W4285261796 modified "2023-10-18" @default.
- W4285261796 title "Expert-knowledge-based data-driven approach for distributed localisation in cell-free Massive MIMO networks" @default.
- W4285261796 cites W1879944367 @default.
- W4285261796 cites W1965665622 @default.
- W4285261796 cites W1997483434 @default.
- W4285261796 cites W2113638573 @default.
- W4285261796 cites W2141682101 @default.
- W4285261796 cites W2286275639 @default.
- W4285261796 cites W2469797310 @default.
- W4285261796 cites W2792367815 @default.
- W4285261796 cites W2796919480 @default.
- W4285261796 cites W2810871807 @default.
- W4285261796 cites W2962927793 @default.
- W4285261796 cites W2963673880 @default.
- W4285261796 cites W2963809637 @default.
- W4285261796 cites W3013905898 @default.
- W4285261796 cites W3039795369 @default.
- W4285261796 cites W3044130444 @default.
- W4285261796 cites W3097958267 @default.
- W4285261796 cites W3131351338 @default.
- W4285261796 cites W3136220431 @default.
- W4285261796 cites W3160247247 @default.
- W4285261796 cites W3188236023 @default.
- W4285261796 cites W3188797791 @default.
- W4285261796 cites W3199820054 @default.
- W4285261796 cites W3206094445 @default.
- W4285261796 doi "https://doi.org/10.1109/access.2022.3177837" @default.
- W4285261796 hasPublicationYear "2022" @default.
- W4285261796 type Work @default.
- W4285261796 citedByCount "0" @default.
- W4285261796 crossrefType "journal-article" @default.
- W4285261796 hasAuthorship W4285261796A5018134056 @default.
- W4285261796 hasAuthorship W4285261796A5036957045 @default.
- W4285261796 hasAuthorship W4285261796A5083014277 @default.
- W4285261796 hasBestOaLocation W42852617961 @default.
- W4285261796 hasConcept C105339364 @default.
- W4285261796 hasConcept C111919701 @default.
- W4285261796 hasConcept C113775141 @default.
- W4285261796 hasConcept C119857082 @default.
- W4285261796 hasConcept C120314980 @default.
- W4285261796 hasConcept C127162648 @default.
- W4285261796 hasConcept C154945302 @default.
- W4285261796 hasConcept C157764524 @default.
- W4285261796 hasConcept C177264268 @default.
- W4285261796 hasConcept C199360897 @default.
- W4285261796 hasConcept C207987634 @default.
- W4285261796 hasConcept C31258907 @default.
- W4285261796 hasConcept C41008148 @default.
- W4285261796 hasConcept C48044578 @default.
- W4285261796 hasConcept C555944384 @default.
- W4285261796 hasConcept C76155785 @default.
- W4285261796 hasConcept C77088390 @default.
- W4285261796 hasConcept C79403827 @default.
- W4285261796 hasConcept C98045186 @default.
- W4285261796 hasConceptScore W4285261796C105339364 @default.
- W4285261796 hasConceptScore W4285261796C111919701 @default.
- W4285261796 hasConceptScore W4285261796C113775141 @default.
- W4285261796 hasConceptScore W4285261796C119857082 @default.
- W4285261796 hasConceptScore W4285261796C120314980 @default.
- W4285261796 hasConceptScore W4285261796C127162648 @default.
- W4285261796 hasConceptScore W4285261796C154945302 @default.
- W4285261796 hasConceptScore W4285261796C157764524 @default.
- W4285261796 hasConceptScore W4285261796C177264268 @default.
- W4285261796 hasConceptScore W4285261796C199360897 @default.
- W4285261796 hasConceptScore W4285261796C207987634 @default.
- W4285261796 hasConceptScore W4285261796C31258907 @default.
- W4285261796 hasConceptScore W4285261796C41008148 @default.
- W4285261796 hasConceptScore W4285261796C48044578 @default.
- W4285261796 hasConceptScore W4285261796C555944384 @default.
- W4285261796 hasConceptScore W4285261796C76155785 @default.
- W4285261796 hasConceptScore W4285261796C77088390 @default.
- W4285261796 hasConceptScore W4285261796C79403827 @default.
- W4285261796 hasConceptScore W4285261796C98045186 @default.
- W4285261796 hasFunder F4320321730 @default.
- W4285261796 hasFunder F4320332999 @default.
- W4285261796 hasLocation W42852617961 @default.
- W4285261796 hasLocation W42852617962 @default.
- W4285261796 hasLocation W42852617963 @default.
- W4285261796 hasOpenAccess W4285261796 @default.
- W4285261796 hasPrimaryLocation W42852617961 @default.
- W4285261796 hasRelatedWork W1566962478 @default.
- W4285261796 hasRelatedWork W1992741870 @default.
- W4285261796 hasRelatedWork W2124673033 @default.
- W4285261796 hasRelatedWork W2320205417 @default.
- W4285261796 hasRelatedWork W2364921833 @default.
- W4285261796 hasRelatedWork W2380023786 @default.
- W4285261796 hasRelatedWork W2385146268 @default.
- W4285261796 hasRelatedWork W2546696010 @default.
- W4285261796 hasRelatedWork W3014165303 @default.
- W4285261796 hasRelatedWork W4300829366 @default.
- W4285261796 hasVolume "10" @default.
- W4285261796 isParatext "false" @default.