Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285263492> ?p ?o ?g. }
- W4285263492 endingPage "50773" @default.
- W4285263492 startingPage "50755" @default.
- W4285263492 abstract "Meteorological conditions have a strong influence on air quality and can play an important role in air quality prediction. However, due to the “black-box” nature of deep learning, it is difficult to obtain trustworthy deep learning models when considering meteorological conditions in air quality prediction. To address the above problem, in this paper, we reveal the influence of meteorological conditions on air quality prediction by utilizing explainable deep learning. In this paper, (1) the source data from air pollutant datasets, including PM <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>2.5</sub> , PM <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>10</sub> , SO <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>2</sub> hourly concentration, and the meteorological condition datasets measuring the temperature, humidity, and atmospheric pressure are obtained; (2) the Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) models are established for air quality prediction in 4 conditions; (3) the SHapley Additive exPlanation (SHAP) method is employed to analyze the explainability of the air quality prediction models. We find that the prediction accuracy is not improved by considering only meteorological conditions. However, when combining meteorological conditions with other air pollutants, the prediction accuracy is higher than considering other air pollutants. In addition, the largest contribution to air quality prediction is atmospheric pressure, followed by humidity and temperature. The reason for the different accuracies of the prediction may because of the interaction between meteorological conditions and other air pollutants. The investigated results in this paper can help improve the prediction accuracy of air quality and achieve trusted air quality predictions." @default.
- W4285263492 created "2022-07-14" @default.
- W4285263492 creator A5027162986 @default.
- W4285263492 creator A5032883585 @default.
- W4285263492 creator A5087549459 @default.
- W4285263492 date "2022-01-01" @default.
- W4285263492 modified "2023-10-14" @default.
- W4285263492 title "Revealing Influence of Meteorological Conditions on Air Quality Prediction Using Explainable Deep Learning" @default.
- W4285263492 cites W1497843332 @default.
- W4285263492 cites W2028163949 @default.
- W4285263492 cites W2039636725 @default.
- W4285263492 cites W2058169517 @default.
- W4285263492 cites W2064675550 @default.
- W4285263492 cites W2076063813 @default.
- W4285263492 cites W2088231131 @default.
- W4285263492 cites W2094406603 @default.
- W4285263492 cites W2129242535 @default.
- W4285263492 cites W2157331557 @default.
- W4285263492 cites W2321069189 @default.
- W4285263492 cites W2496114304 @default.
- W4285263492 cites W2604702583 @default.
- W4285263492 cites W2774175517 @default.
- W4285263492 cites W2886875452 @default.
- W4285263492 cites W2897932070 @default.
- W4285263492 cites W2898461917 @default.
- W4285263492 cites W2899742462 @default.
- W4285263492 cites W2899867564 @default.
- W4285263492 cites W2900766238 @default.
- W4285263492 cites W2914487400 @default.
- W4285263492 cites W2945048652 @default.
- W4285263492 cites W2965087576 @default.
- W4285263492 cites W2981731882 @default.
- W4285263492 cites W2982277720 @default.
- W4285263492 cites W2984057408 @default.
- W4285263492 cites W2990955039 @default.
- W4285263492 cites W2991648381 @default.
- W4285263492 cites W2997428643 @default.
- W4285263492 cites W3027059498 @default.
- W4285263492 cites W3088021634 @default.
- W4285263492 cites W3112234341 @default.
- W4285263492 cites W3123084659 @default.
- W4285263492 cites W3212755948 @default.
- W4285263492 doi "https://doi.org/10.1109/access.2022.3173734" @default.
- W4285263492 hasPublicationYear "2022" @default.
- W4285263492 type Work @default.
- W4285263492 citedByCount "3" @default.
- W4285263492 countsByYear W42852634922023 @default.
- W4285263492 crossrefType "journal-article" @default.
- W4285263492 hasAuthorship W4285263492A5027162986 @default.
- W4285263492 hasAuthorship W4285263492A5032883585 @default.
- W4285263492 hasAuthorship W4285263492A5087549459 @default.
- W4285263492 hasBestOaLocation W42852634921 @default.
- W4285263492 hasConcept C108583219 @default.
- W4285263492 hasConcept C111472728 @default.
- W4285263492 hasConcept C118365302 @default.
- W4285263492 hasConcept C119857082 @default.
- W4285263492 hasConcept C126314574 @default.
- W4285263492 hasConcept C138885662 @default.
- W4285263492 hasConcept C151420433 @default.
- W4285263492 hasConcept C153294291 @default.
- W4285263492 hasConcept C153701036 @default.
- W4285263492 hasConcept C154945302 @default.
- W4285263492 hasConcept C178790620 @default.
- W4285263492 hasConcept C185592680 @default.
- W4285263492 hasConcept C205649164 @default.
- W4285263492 hasConcept C2779530757 @default.
- W4285263492 hasConcept C2983363897 @default.
- W4285263492 hasConcept C2987469573 @default.
- W4285263492 hasConcept C2987853052 @default.
- W4285263492 hasConcept C38652104 @default.
- W4285263492 hasConcept C39432304 @default.
- W4285263492 hasConcept C41008148 @default.
- W4285263492 hasConcept C559116025 @default.
- W4285263492 hasConceptScore W4285263492C108583219 @default.
- W4285263492 hasConceptScore W4285263492C111472728 @default.
- W4285263492 hasConceptScore W4285263492C118365302 @default.
- W4285263492 hasConceptScore W4285263492C119857082 @default.
- W4285263492 hasConceptScore W4285263492C126314574 @default.
- W4285263492 hasConceptScore W4285263492C138885662 @default.
- W4285263492 hasConceptScore W4285263492C151420433 @default.
- W4285263492 hasConceptScore W4285263492C153294291 @default.
- W4285263492 hasConceptScore W4285263492C153701036 @default.
- W4285263492 hasConceptScore W4285263492C154945302 @default.
- W4285263492 hasConceptScore W4285263492C178790620 @default.
- W4285263492 hasConceptScore W4285263492C185592680 @default.
- W4285263492 hasConceptScore W4285263492C205649164 @default.
- W4285263492 hasConceptScore W4285263492C2779530757 @default.
- W4285263492 hasConceptScore W4285263492C2983363897 @default.
- W4285263492 hasConceptScore W4285263492C2987469573 @default.
- W4285263492 hasConceptScore W4285263492C2987853052 @default.
- W4285263492 hasConceptScore W4285263492C38652104 @default.
- W4285263492 hasConceptScore W4285263492C39432304 @default.
- W4285263492 hasConceptScore W4285263492C41008148 @default.
- W4285263492 hasConceptScore W4285263492C559116025 @default.
- W4285263492 hasFunder F4320321132 @default.
- W4285263492 hasFunder F4320326153 @default.
- W4285263492 hasLocation W42852634921 @default.
- W4285263492 hasLocation W42852634922 @default.