Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285263852> ?p ?o ?g. }
Showing items 1 to 66 of
66
with 100 items per page.
- W4285263852 endingPage "75" @default.
- W4285263852 startingPage "71" @default.
- W4285263852 abstract "Recently, Distributed Denial of Service(DDOS) attacks have been on the rise and come in very many forms costing many technology firms a lot of time and money. In this study, deep learning models were compared in terms of performance, to solve the problem of detecting these attacks. The first step to mitigating DDOS attacks is by first identifying them, which serves as a toll order. This report used two deep learning models: the Deep Feed Forward (DFF) algorithm and a hybrid containing a CNN with BiLSTM (bidirectional long short-term memory). To compare these algorithms, the “DDoS Botnet Attack on IoT a71a0b42-4” dataset available on Kaggle was chosen. The dataset was undergone various evaluations to find out the performance metrics between the two algorithms. From the simulations conducted, DFF was found to have an accuracy of 87.2% with detecting the time of 0.8 seconds, while the CNN-Bi-LSTM was found to have an accuracy of 94.6% with detecting the time of 1.4 seconds." @default.
- W4285263852 created "2022-07-14" @default.
- W4285263852 creator A5006999867 @default.
- W4285263852 creator A5011144798 @default.
- W4285263852 creator A5081572012 @default.
- W4285263852 date "2022-01-01" @default.
- W4285263852 modified "2023-10-07" @default.
- W4285263852 title "COMPATIVE ANALYSIS OF DEEP LEARNING MODELS FOR DDOS ATTACKS DETECTION" @default.
- W4285263852 cites W2946414622 @default.
- W4285263852 cites W3116027269 @default.
- W4285263852 cites W3126855403 @default.
- W4285263852 cites W3172076356 @default.
- W4285263852 cites W3204524944 @default.
- W4285263852 doi "https://doi.org/10.55528/18292828-2022.1-71" @default.
- W4285263852 hasPublicationYear "2022" @default.
- W4285263852 type Work @default.
- W4285263852 citedByCount "0" @default.
- W4285263852 crossrefType "journal-article" @default.
- W4285263852 hasAuthorship W4285263852A5006999867 @default.
- W4285263852 hasAuthorship W4285263852A5011144798 @default.
- W4285263852 hasAuthorship W4285263852A5081572012 @default.
- W4285263852 hasBestOaLocation W42852638521 @default.
- W4285263852 hasConcept C108583219 @default.
- W4285263852 hasConcept C110875604 @default.
- W4285263852 hasConcept C119857082 @default.
- W4285263852 hasConcept C120865594 @default.
- W4285263852 hasConcept C133488467 @default.
- W4285263852 hasConcept C136764020 @default.
- W4285263852 hasConcept C147168706 @default.
- W4285263852 hasConcept C154945302 @default.
- W4285263852 hasConcept C22735295 @default.
- W4285263852 hasConcept C38652104 @default.
- W4285263852 hasConcept C38822068 @default.
- W4285263852 hasConcept C41008148 @default.
- W4285263852 hasConcept C50644808 @default.
- W4285263852 hasConceptScore W4285263852C108583219 @default.
- W4285263852 hasConceptScore W4285263852C110875604 @default.
- W4285263852 hasConceptScore W4285263852C119857082 @default.
- W4285263852 hasConceptScore W4285263852C120865594 @default.
- W4285263852 hasConceptScore W4285263852C133488467 @default.
- W4285263852 hasConceptScore W4285263852C136764020 @default.
- W4285263852 hasConceptScore W4285263852C147168706 @default.
- W4285263852 hasConceptScore W4285263852C154945302 @default.
- W4285263852 hasConceptScore W4285263852C22735295 @default.
- W4285263852 hasConceptScore W4285263852C38652104 @default.
- W4285263852 hasConceptScore W4285263852C38822068 @default.
- W4285263852 hasConceptScore W4285263852C41008148 @default.
- W4285263852 hasConceptScore W4285263852C50644808 @default.
- W4285263852 hasLocation W42852638521 @default.
- W4285263852 hasOpenAccess W4285263852 @default.
- W4285263852 hasPrimaryLocation W42852638521 @default.
- W4285263852 hasRelatedWork W1432036814 @default.
- W4285263852 hasRelatedWork W2181380068 @default.
- W4285263852 hasRelatedWork W2389528884 @default.
- W4285263852 hasRelatedWork W2598265749 @default.
- W4285263852 hasRelatedWork W3026018975 @default.
- W4285263852 hasRelatedWork W3166165364 @default.
- W4285263852 hasRelatedWork W4214837533 @default.
- W4285263852 hasRelatedWork W4225728612 @default.
- W4285263852 hasRelatedWork W4298141856 @default.
- W4285263852 hasRelatedWork W2783792841 @default.
- W4285263852 isParatext "false" @default.
- W4285263852 isRetracted "false" @default.
- W4285263852 workType "article" @default.