Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285265053> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W4285265053 abstract "In recent times, there has been an exponential growth in the number of complex documents, texts, and user-generated content, mainly through social media, blogs and review websites, etc., that require a deeper understanding of deep learning methods to be able to accurately classify texts. This research work approaches problems of fine-grained sentiment analysis. We explore how the sentiment of the user-generated text can be identified using Deep Learning. This paper contributes sentiment analysis, which aims to extract opinions from the text. E-commerce, social media, and other many online user-generated contents provide a powerful way for collecting people’s thoughts and their feelings towards users or customers. Powerful sentiment analysis helps many businesses with regard to sentiment, so they will understand users’ perceptions of the product. It’s also very helpful for other customers to get reviews of products and get to know about services they offer. Lots of websites provide users with reviews but it’s very difficult to make some decisions from them. Deep Learning sentiment helps to identify the pros and cons of a product. Nowadays Automated sentiment analysis systems are tools for decision-making for many parties. The deep learning algorithms are able to handle complex sequential data and determine non-linear relationships within data. Recurrent Neural Networks (RNN) are widely used in natural language processing (NLP) because they are very suitable to process variable-length text. Doing Fine-grained sentiment analysis is a challenging task. We use a modified Recurrent Neural Network (Tree-LSTM) for fine-grained analysis. In this work, we provide a brief overview of deep learning classification algorithms and also conclude that Tree-LSTM gives state-of-the-art accuracy for fine-grained sentiment analysis." @default.
- W4285265053 created "2022-07-14" @default.
- W4285265053 creator A5070544152 @default.
- W4285265053 creator A5070694145 @default.
- W4285265053 creator A5084164687 @default.
- W4285265053 creator A5092747354 @default.
- W4285265053 date "2022-01-01" @default.
- W4285265053 modified "2023-09-26" @default.
- W4285265053 title "Sentiment Analysis By Using Modified RNN And A Tree LSTM" @default.
- W4285265053 cites W181622656 @default.
- W4285265053 cites W2020239297 @default.
- W4285265053 cites W2020438140 @default.
- W4285265053 cites W2058715873 @default.
- W4285265053 cites W4211186029 @default.
- W4285265053 doi "https://doi.org/10.1109/ic3p52835.2022.00012" @default.
- W4285265053 hasPublicationYear "2022" @default.
- W4285265053 type Work @default.
- W4285265053 citedByCount "0" @default.
- W4285265053 crossrefType "proceedings-article" @default.
- W4285265053 hasAuthorship W4285265053A5070544152 @default.
- W4285265053 hasAuthorship W4285265053A5070694145 @default.
- W4285265053 hasAuthorship W4285265053A5084164687 @default.
- W4285265053 hasAuthorship W4285265053A5092747354 @default.
- W4285265053 hasConcept C108583219 @default.
- W4285265053 hasConcept C119857082 @default.
- W4285265053 hasConcept C136764020 @default.
- W4285265053 hasConcept C147168706 @default.
- W4285265053 hasConcept C154945302 @default.
- W4285265053 hasConcept C162324750 @default.
- W4285265053 hasConcept C187736073 @default.
- W4285265053 hasConcept C204321447 @default.
- W4285265053 hasConcept C23123220 @default.
- W4285265053 hasConcept C2522767166 @default.
- W4285265053 hasConcept C2524010 @default.
- W4285265053 hasConcept C2780451532 @default.
- W4285265053 hasConcept C33923547 @default.
- W4285265053 hasConcept C41008148 @default.
- W4285265053 hasConcept C50644808 @default.
- W4285265053 hasConcept C518677369 @default.
- W4285265053 hasConcept C66402592 @default.
- W4285265053 hasConcept C90673727 @default.
- W4285265053 hasConceptScore W4285265053C108583219 @default.
- W4285265053 hasConceptScore W4285265053C119857082 @default.
- W4285265053 hasConceptScore W4285265053C136764020 @default.
- W4285265053 hasConceptScore W4285265053C147168706 @default.
- W4285265053 hasConceptScore W4285265053C154945302 @default.
- W4285265053 hasConceptScore W4285265053C162324750 @default.
- W4285265053 hasConceptScore W4285265053C187736073 @default.
- W4285265053 hasConceptScore W4285265053C204321447 @default.
- W4285265053 hasConceptScore W4285265053C23123220 @default.
- W4285265053 hasConceptScore W4285265053C2522767166 @default.
- W4285265053 hasConceptScore W4285265053C2524010 @default.
- W4285265053 hasConceptScore W4285265053C2780451532 @default.
- W4285265053 hasConceptScore W4285265053C33923547 @default.
- W4285265053 hasConceptScore W4285265053C41008148 @default.
- W4285265053 hasConceptScore W4285265053C50644808 @default.
- W4285265053 hasConceptScore W4285265053C518677369 @default.
- W4285265053 hasConceptScore W4285265053C66402592 @default.
- W4285265053 hasConceptScore W4285265053C90673727 @default.
- W4285265053 hasLocation W42852650531 @default.
- W4285265053 hasOpenAccess W4285265053 @default.
- W4285265053 hasPrimaryLocation W42852650531 @default.
- W4285265053 hasRelatedWork W2748952813 @default.
- W4285265053 hasRelatedWork W3080191145 @default.
- W4285265053 hasRelatedWork W3192794374 @default.
- W4285265053 hasRelatedWork W4223943233 @default.
- W4285265053 hasRelatedWork W4225161397 @default.
- W4285265053 hasRelatedWork W4312200629 @default.
- W4285265053 hasRelatedWork W4360585206 @default.
- W4285265053 hasRelatedWork W4364306694 @default.
- W4285265053 hasRelatedWork W4380075502 @default.
- W4285265053 hasRelatedWork W4380086463 @default.
- W4285265053 isParatext "false" @default.
- W4285265053 isRetracted "false" @default.
- W4285265053 workType "article" @default.