Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285265282> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W4285265282 endingPage "245" @default.
- W4285265282 startingPage "231" @default.
- W4285265282 abstract "Complex dynamic characteristics of systems based on entropy entail a detailed specification and synthesis of the intricate elements, as the system gets more and more complex. The growth of complexity, in more nonlinear and complicated instances, evolves with increasing information and entropy in a monotonous way. Multilevel analyses are to be employed for the development of a quantitative understanding of complexity, which is among the information required for the description of a particular system. In that regard, to detect and quantify nonlinearity that is in question in a signal is realized through methods that employ complexity and entropy. Brain as a complex system, formed out of neurons and molecules formed out of atoms, with many elements being at interplay with one another requires a sophisticated analysis since uncertainty prevails. Multiple sclerosis (MS) is a neurodegenerative autoimmune disease affecting the central nervous system, particularly the brain, optic nerve, and spinal cord, within this complex system. The timely diagnosis of MS and prediction of the long-term course of disability is a highly complex process, necessitating a lot of time and effort. Robust model-driven decision-making is critical for the prognosis and diagnosis of MS whose course varies from individual to individual, displaying transient properties and a high level of uncertainty. Accordingly, the aim of this chapter is to facilitate the accurate classification of three MS subgroups (relapsing remitting MS, secondary progressive MS, primary progressive MS) as well as healthy individuals. For this particular purpose in our proposed method, the following steps were performed: (1) an entropy-based feature selection method (Shannon entropy and minimum redundancy maximum relevance [MRMR]) and linear transformation methods (principal component analysis [PCA] and linear discriminant analysis [LDA]) were administered on the MS dataset. (2) Based on the MS dataset, four new datasets (Shannon entropy-MS dataset, MRMR-MS dataset, PCA-MS dataset, and LDA-MS dataset) with the new significant attributes were obtained. Each new dataset obtained was addressed as input for the training procedure of k-nearest neighbor (k-NN) and decision tree algorithms. (3) The accuracy rates for the classification of the MS subgroups as obtained from the application of k-NN and decision tree algorithms on the new datasets obtained from (1) and (2) were compared. The optimized experimental results of our study demonstrate that Shannon entropy, as a distinctive entropy method, is proved to be higher in terms of accuracy compared with the other feature selection methods. Consequently, the proposed model of ours in the study manifests the reliability, accuracy and applicability of the integrated methods employed. Thus, our study aims at pointing out a new perspective for critical decision-making and toward manageable tracking in medicine and relevant fields that have to deal with the complex dynamic systems where uncertainty and heterogeneity prevail." @default.
- W4285265282 created "2022-07-14" @default.
- W4285265282 creator A5074690407 @default.
- W4285265282 creator A5084812421 @default.
- W4285265282 date "2022-01-01" @default.
- W4285265282 modified "2023-10-01" @default.
- W4285265282 title "Shannon entropy-based complexity quantification of nonlinear stochastic process" @default.
- W4285265282 cites W1976538142 @default.
- W4285265282 cites W1989014912 @default.
- W4285265282 cites W2029801111 @default.
- W4285265282 cites W2032917911 @default.
- W4285265282 cites W2068883935 @default.
- W4285265282 cites W2071128523 @default.
- W4285265282 cites W2071441133 @default.
- W4285265282 cites W2076403920 @default.
- W4285265282 cites W2089649677 @default.
- W4285265282 cites W2094798378 @default.
- W4285265282 cites W2109394932 @default.
- W4285265282 cites W2112165124 @default.
- W4285265282 cites W2134287462 @default.
- W4285265282 cites W2154053567 @default.
- W4285265282 cites W2201547794 @default.
- W4285265282 cites W2202662545 @default.
- W4285265282 cites W2410237123 @default.
- W4285265282 cites W2509876630 @default.
- W4285265282 cites W2548043919 @default.
- W4285265282 cites W2582662555 @default.
- W4285265282 cites W2591227394 @default.
- W4285265282 cites W2617535932 @default.
- W4285265282 cites W2618712758 @default.
- W4285265282 cites W2622806209 @default.
- W4285265282 cites W2626027152 @default.
- W4285265282 cites W2735004254 @default.
- W4285265282 cites W2777074421 @default.
- W4285265282 cites W2796089230 @default.
- W4285265282 cites W2949687910 @default.
- W4285265282 cites W2951327916 @default.
- W4285265282 cites W2971603353 @default.
- W4285265282 cites W2978725006 @default.
- W4285265282 cites W2991096017 @default.
- W4285265282 cites W2998645509 @default.
- W4285265282 cites W2998727463 @default.
- W4285265282 cites W3021822319 @default.
- W4285265282 cites W3083577467 @default.
- W4285265282 cites W3086366754 @default.
- W4285265282 cites W3101115834 @default.
- W4285265282 cites W3131013261 @default.
- W4285265282 cites W3159237871 @default.
- W4285265282 cites W636917482 @default.
- W4285265282 doi "https://doi.org/10.1016/b978-0-323-90032-4.00018-3" @default.
- W4285265282 hasPublicationYear "2022" @default.
- W4285265282 type Work @default.
- W4285265282 citedByCount "0" @default.
- W4285265282 crossrefType "book-chapter" @default.
- W4285265282 hasAuthorship W4285265282A5074690407 @default.
- W4285265282 hasAuthorship W4285265282A5084812421 @default.
- W4285265282 hasConcept C106301342 @default.
- W4285265282 hasConcept C118552586 @default.
- W4285265282 hasConcept C121332964 @default.
- W4285265282 hasConcept C154945302 @default.
- W4285265282 hasConcept C15744967 @default.
- W4285265282 hasConcept C158622935 @default.
- W4285265282 hasConcept C2780640218 @default.
- W4285265282 hasConcept C41008148 @default.
- W4285265282 hasConcept C47822265 @default.
- W4285265282 hasConcept C62520636 @default.
- W4285265282 hasConceptScore W4285265282C106301342 @default.
- W4285265282 hasConceptScore W4285265282C118552586 @default.
- W4285265282 hasConceptScore W4285265282C121332964 @default.
- W4285265282 hasConceptScore W4285265282C154945302 @default.
- W4285265282 hasConceptScore W4285265282C15744967 @default.
- W4285265282 hasConceptScore W4285265282C158622935 @default.
- W4285265282 hasConceptScore W4285265282C2780640218 @default.
- W4285265282 hasConceptScore W4285265282C41008148 @default.
- W4285265282 hasConceptScore W4285265282C47822265 @default.
- W4285265282 hasConceptScore W4285265282C62520636 @default.
- W4285265282 hasLocation W42852652821 @default.
- W4285265282 hasOpenAccess W4285265282 @default.
- W4285265282 hasPrimaryLocation W42852652821 @default.
- W4285265282 hasRelatedWork W1963273698 @default.
- W4285265282 hasRelatedWork W2002088516 @default.
- W4285265282 hasRelatedWork W2060492697 @default.
- W4285265282 hasRelatedWork W2255942914 @default.
- W4285265282 hasRelatedWork W2512307513 @default.
- W4285265282 hasRelatedWork W2970308192 @default.
- W4285265282 hasRelatedWork W3099557286 @default.
- W4285265282 hasRelatedWork W3107474891 @default.
- W4285265282 hasRelatedWork W3181294940 @default.
- W4285265282 hasRelatedWork W4223892239 @default.
- W4285265282 isParatext "false" @default.
- W4285265282 isRetracted "false" @default.
- W4285265282 workType "book-chapter" @default.