Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285266445> ?p ?o ?g. }
- W4285266445 endingPage "412" @default.
- W4285266445 startingPage "405" @default.
- W4285266445 abstract "Artificial neural networks (ANNs) facilitate rapid quantification of process spectra from inline process analytical technologies. Data fusion also enables combination of multiple data sources, resulting in better quality concentration measurements." @default.
- W4285266445 created "2022-07-14" @default.
- W4285266445 creator A5036432720 @default.
- W4285266445 creator A5042764613 @default.
- W4285266445 creator A5056977910 @default.
- W4285266445 creator A5058498105 @default.
- W4285266445 creator A5063134639 @default.
- W4285266445 date "2022-01-01" @default.
- W4285266445 modified "2023-09-26" @default.
- W4285266445 title "Artificial neural networks and data fusion enable concentration predictions for inline process analytics" @default.
- W4285266445 cites W1840182658 @default.
- W4285266445 cites W1937018166 @default.
- W4285266445 cites W1954905398 @default.
- W4285266445 cites W1965229818 @default.
- W4285266445 cites W1998863103 @default.
- W4285266445 cites W2006489199 @default.
- W4285266445 cites W2027074804 @default.
- W4285266445 cites W2029505541 @default.
- W4285266445 cites W2030795735 @default.
- W4285266445 cites W2057561052 @default.
- W4285266445 cites W2071345536 @default.
- W4285266445 cites W2073010988 @default.
- W4285266445 cites W2073503722 @default.
- W4285266445 cites W2126006677 @default.
- W4285266445 cites W2128662194 @default.
- W4285266445 cites W2159346529 @default.
- W4285266445 cites W2239257159 @default.
- W4285266445 cites W2268401673 @default.
- W4285266445 cites W2291845424 @default.
- W4285266445 cites W2298073007 @default.
- W4285266445 cites W2299315274 @default.
- W4285266445 cites W2334592091 @default.
- W4285266445 cites W2340424973 @default.
- W4285266445 cites W2529555760 @default.
- W4285266445 cites W2616556290 @default.
- W4285266445 cites W2621108245 @default.
- W4285266445 cites W2693798264 @default.
- W4285266445 cites W2752532133 @default.
- W4285266445 cites W2752586675 @default.
- W4285266445 cites W2789773601 @default.
- W4285266445 cites W2796280723 @default.
- W4285266445 cites W2805904181 @default.
- W4285266445 cites W2808037215 @default.
- W4285266445 cites W2891182990 @default.
- W4285266445 cites W2894870112 @default.
- W4285266445 cites W2899261262 @default.
- W4285266445 cites W2902762889 @default.
- W4285266445 cites W2937318252 @default.
- W4285266445 cites W2940826261 @default.
- W4285266445 cites W2946157353 @default.
- W4285266445 cites W2946475076 @default.
- W4285266445 cites W2954374024 @default.
- W4285266445 cites W2964525681 @default.
- W4285266445 cites W2968071222 @default.
- W4285266445 cites W2972243934 @default.
- W4285266445 cites W2979555018 @default.
- W4285266445 cites W3001983986 @default.
- W4285266445 cites W3005641930 @default.
- W4285266445 cites W3005818151 @default.
- W4285266445 cites W3006836243 @default.
- W4285266445 cites W3012389165 @default.
- W4285266445 cites W3023593421 @default.
- W4285266445 cites W3034926329 @default.
- W4285266445 cites W3043857001 @default.
- W4285266445 cites W3090948212 @default.
- W4285266445 cites W3093998636 @default.
- W4285266445 cites W3114030541 @default.
- W4285266445 cites W3148199552 @default.
- W4285266445 cites W3153543633 @default.
- W4285266445 cites W3184125264 @default.
- W4285266445 cites W3201268663 @default.
- W4285266445 cites W3205047961 @default.
- W4285266445 cites W3211377821 @default.
- W4285266445 cites W3212619979 @default.
- W4285266445 cites W4210404500 @default.
- W4285266445 cites W4211033508 @default.
- W4285266445 doi "https://doi.org/10.1039/d2dd00006g" @default.
- W4285266445 hasPublicationYear "2022" @default.
- W4285266445 type Work @default.
- W4285266445 citedByCount "1" @default.
- W4285266445 countsByYear W42852664452023 @default.
- W4285266445 crossrefType "journal-article" @default.
- W4285266445 hasAuthorship W4285266445A5036432720 @default.
- W4285266445 hasAuthorship W4285266445A5042764613 @default.
- W4285266445 hasAuthorship W4285266445A5056977910 @default.
- W4285266445 hasAuthorship W4285266445A5058498105 @default.
- W4285266445 hasAuthorship W4285266445A5063134639 @default.
- W4285266445 hasBestOaLocation W42852664451 @default.
- W4285266445 hasConcept C111919701 @default.
- W4285266445 hasConcept C119857082 @default.
- W4285266445 hasConcept C124101348 @default.
- W4285266445 hasConcept C138885662 @default.
- W4285266445 hasConcept C154945302 @default.
- W4285266445 hasConcept C158525013 @default.
- W4285266445 hasConcept C175801342 @default.
- W4285266445 hasConcept C2522767166 @default.
- W4285266445 hasConcept C33954974 @default.
- W4285266445 hasConcept C41008148 @default.