Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285267271> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W4285267271 endingPage "1230" @default.
- W4285267271 startingPage "1215" @default.
- W4285267271 abstract "In this modern era, the transformation of conventional objects into smart ones via internet vitality, data management, together with many more are the main aim of the Internet of Things (IoT) centered Big Data (BD) analysis. In the past few years, significant augmentation in the IoT-centered Healthcare (HC) monitoring can be seen. Nevertheless, the merging of health-specific parameters along with IoT-centric Health Monitoring (HM) systems with BD handling ability is turned out to be a complicated research scope. With the aid of Map-Reduce and LSQN3 techniques, this paper proposed IoT devices in Wireless Sensors Networks (WSN) centered BD Mining (BDM) approach. Initially, the heart disease prediction dataset is acquired from publicly available sources in the proposed approach. Following that, the dataset is mitigated by reducing redundant data using Map-Reduce and making it useful for the upcoming examination. During the mapping step, the Linear Log induced K-Means Algorithm (LL-KMA) clustering algorithm is used. The LF-CSO technique is used in the reduction phase to select the optimal Cluster Centroids (CC). The features are extracted from the reduced data. After that, utilizing the Pearson Correlation Coefficient based Generalized Discriminant Analysis (PCC-GDA), the extracted features’ dimensionality is mitigated. Subsequently, the features being reduced are neumaralised for classification purposes. Lastly, to classify the disease, the Log Sigmoid activation based Quasi-Newton Neural network (LSQN3) classifier is employed. The proposed method is contrasted with the existing methodologies to assess the performance. The experiential outcomes displayed that the proposed work is highly efficient than the other methodologies." @default.
- W4285267271 created "2022-07-14" @default.
- W4285267271 creator A5010466594 @default.
- W4285267271 creator A5010915336 @default.
- W4285267271 creator A5023599022 @default.
- W4285267271 creator A5044929563 @default.
- W4285267271 creator A5045695598 @default.
- W4285267271 creator A5061881092 @default.
- W4285267271 creator A5077493115 @default.
- W4285267271 date "2022-01-01" @default.
- W4285267271 modified "2023-10-01" @default.
- W4285267271 title "IoT Based Disease Prediction Using Mapreduce and LSQN3 Techniques" @default.
- W4285267271 cites W2101305037 @default.
- W4285267271 cites W2258475915 @default.
- W4285267271 cites W2769755321 @default.
- W4285267271 cites W2808605589 @default.
- W4285267271 cites W2891374184 @default.
- W4285267271 cites W2905939940 @default.
- W4285267271 cites W2917797872 @default.
- W4285267271 cites W2990158226 @default.
- W4285267271 cites W3012121365 @default.
- W4285267271 cites W3023678943 @default.
- W4285267271 cites W3028764597 @default.
- W4285267271 cites W3036630507 @default.
- W4285267271 cites W3036842656 @default.
- W4285267271 cites W3037214171 @default.
- W4285267271 cites W3127766792 @default.
- W4285267271 cites W3160359154 @default.
- W4285267271 cites W3167341124 @default.
- W4285267271 cites W3180545632 @default.
- W4285267271 cites W3187314568 @default.
- W4285267271 cites W3192230747 @default.
- W4285267271 cites W3199093474 @default.
- W4285267271 doi "https://doi.org/10.32604/iasc.2022.025792" @default.
- W4285267271 hasPublicationYear "2022" @default.
- W4285267271 type Work @default.
- W4285267271 citedByCount "2" @default.
- W4285267271 countsByYear W42852672712022 @default.
- W4285267271 countsByYear W42852672712023 @default.
- W4285267271 crossrefType "journal-article" @default.
- W4285267271 hasAuthorship W4285267271A5010466594 @default.
- W4285267271 hasAuthorship W4285267271A5010915336 @default.
- W4285267271 hasAuthorship W4285267271A5023599022 @default.
- W4285267271 hasAuthorship W4285267271A5044929563 @default.
- W4285267271 hasAuthorship W4285267271A5045695598 @default.
- W4285267271 hasAuthorship W4285267271A5061881092 @default.
- W4285267271 hasAuthorship W4285267271A5077493115 @default.
- W4285267271 hasBestOaLocation W42852672711 @default.
- W4285267271 hasConcept C119857082 @default.
- W4285267271 hasConcept C124101348 @default.
- W4285267271 hasConcept C146599234 @default.
- W4285267271 hasConcept C149635348 @default.
- W4285267271 hasConcept C154945302 @default.
- W4285267271 hasConcept C41008148 @default.
- W4285267271 hasConcept C69738355 @default.
- W4285267271 hasConcept C70518039 @default.
- W4285267271 hasConcept C73555534 @default.
- W4285267271 hasConcept C81860439 @default.
- W4285267271 hasConcept C95623464 @default.
- W4285267271 hasConceptScore W4285267271C119857082 @default.
- W4285267271 hasConceptScore W4285267271C124101348 @default.
- W4285267271 hasConceptScore W4285267271C146599234 @default.
- W4285267271 hasConceptScore W4285267271C149635348 @default.
- W4285267271 hasConceptScore W4285267271C154945302 @default.
- W4285267271 hasConceptScore W4285267271C41008148 @default.
- W4285267271 hasConceptScore W4285267271C69738355 @default.
- W4285267271 hasConceptScore W4285267271C70518039 @default.
- W4285267271 hasConceptScore W4285267271C73555534 @default.
- W4285267271 hasConceptScore W4285267271C81860439 @default.
- W4285267271 hasConceptScore W4285267271C95623464 @default.
- W4285267271 hasIssue "2" @default.
- W4285267271 hasLocation W42852672711 @default.
- W4285267271 hasOpenAccess W4285267271 @default.
- W4285267271 hasPrimaryLocation W42852672711 @default.
- W4285267271 hasRelatedWork W2045437074 @default.
- W4285267271 hasRelatedWork W2120026622 @default.
- W4285267271 hasRelatedWork W2347434549 @default.
- W4285267271 hasRelatedWork W2543429083 @default.
- W4285267271 hasRelatedWork W2953024232 @default.
- W4285267271 hasRelatedWork W2970287821 @default.
- W4285267271 hasRelatedWork W3208326136 @default.
- W4285267271 hasRelatedWork W4221088574 @default.
- W4285267271 hasRelatedWork W4301079385 @default.
- W4285267271 hasRelatedWork W2992603957 @default.
- W4285267271 hasVolume "34" @default.
- W4285267271 isParatext "false" @default.
- W4285267271 isRetracted "false" @default.
- W4285267271 workType "article" @default.