Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285268934> ?p ?o ?g. }
- W4285268934 endingPage "48963" @default.
- W4285268934 startingPage "48948" @default.
- W4285268934 abstract "The importance of e-learning has exceeded expectations over the past decade. Accordingly, several systems have been developed in completing intelligent assistive tools where students’ behavior can be tracked and followed with suitable recommendations to enhance students’ performance. This paper has two main objectives. First, the Community of Inquiry framework (CoI) is utilized as one of the most prominent student behavioral modeling to select features that best represent the students. According to experts’ annotation, this study filters students’ measured attributes from the StudentLife dataset to the CoI model, focusing on social presence. Second, the research looks at improving the accuracy and runtime of the Grade Point Average (GPA) prediction by introducing a hybrid model that combines combining k-means clustering phase based on student similarity with regression-based prediction. The clustering was performed on both static and Spatio-temporal (spatial time -series) students’ attributes. Results show that LassoCV outperforms other regression techniques such as Standard Linear, Lasso, and Ridge Regression with an RMSE averaged around 0.15 and an average Adjusted R2 of 0.935 overall trials. Selecting the features according to the CoI reduces the number of features by 62.8%. Time-series clustering on its own was not beneficial; however, when conducted with the selection phase, it raised the quality of the model achieved by 2-3%." @default.
- W4285268934 created "2022-07-14" @default.
- W4285268934 creator A5025033113 @default.
- W4285268934 creator A5026674783 @default.
- W4285268934 creator A5027622725 @default.
- W4285268934 date "2022-01-01" @default.
- W4285268934 modified "2023-09-27" @default.
- W4285268934 title "Utilizing Social Clustering-Based Regression Model for Predicting Student’s GPA" @default.
- W4285268934 cites W1557121730 @default.
- W4285268934 cites W2022466128 @default.
- W4285268934 cites W2024722430 @default.
- W4285268934 cites W2063978378 @default.
- W4285268934 cites W2065564478 @default.
- W4285268934 cites W2078609471 @default.
- W4285268934 cites W2107092366 @default.
- W4285268934 cites W2126641241 @default.
- W4285268934 cites W2130005184 @default.
- W4285268934 cites W2132228451 @default.
- W4285268934 cites W2132322340 @default.
- W4285268934 cites W2141830387 @default.
- W4285268934 cites W2156567116 @default.
- W4285268934 cites W2159877036 @default.
- W4285268934 cites W2200755262 @default.
- W4285268934 cites W2239034455 @default.
- W4285268934 cites W2255539840 @default.
- W4285268934 cites W2346388159 @default.
- W4285268934 cites W2408821405 @default.
- W4285268934 cites W2472010812 @default.
- W4285268934 cites W2495025701 @default.
- W4285268934 cites W2517889164 @default.
- W4285268934 cites W2586678164 @default.
- W4285268934 cites W2605296821 @default.
- W4285268934 cites W2612059685 @default.
- W4285268934 cites W2734326504 @default.
- W4285268934 cites W2751175149 @default.
- W4285268934 cites W2755104540 @default.
- W4285268934 cites W2755491670 @default.
- W4285268934 cites W2790455619 @default.
- W4285268934 cites W2792002226 @default.
- W4285268934 cites W2802880928 @default.
- W4285268934 cites W2808990700 @default.
- W4285268934 cites W2885849299 @default.
- W4285268934 cites W2887833224 @default.
- W4285268934 cites W2889975280 @default.
- W4285268934 cites W2891483199 @default.
- W4285268934 cites W2896500548 @default.
- W4285268934 cites W2902204108 @default.
- W4285268934 cites W2909329017 @default.
- W4285268934 cites W2910327041 @default.
- W4285268934 cites W2936179098 @default.
- W4285268934 cites W2943560158 @default.
- W4285268934 cites W2944425538 @default.
- W4285268934 cites W2950348447 @default.
- W4285268934 cites W2954464729 @default.
- W4285268934 cites W2972761328 @default.
- W4285268934 cites W2973117219 @default.
- W4285268934 cites W2990636069 @default.
- W4285268934 cites W3012126397 @default.
- W4285268934 cites W3013448230 @default.
- W4285268934 cites W3013692727 @default.
- W4285268934 cites W3018063079 @default.
- W4285268934 cites W3021058087 @default.
- W4285268934 cites W3031354959 @default.
- W4285268934 cites W3037628497 @default.
- W4285268934 cites W3081367520 @default.
- W4285268934 cites W3083354488 @default.
- W4285268934 cites W3089047962 @default.
- W4285268934 cites W3094843583 @default.
- W4285268934 cites W3100609876 @default.
- W4285268934 cites W3101541083 @default.
- W4285268934 cites W3113225211 @default.
- W4285268934 cites W3115495034 @default.
- W4285268934 cites W3117756155 @default.
- W4285268934 cites W3119538385 @default.
- W4285268934 cites W3120229318 @default.
- W4285268934 cites W3159464177 @default.
- W4285268934 cites W3175745833 @default.
- W4285268934 cites W3184360216 @default.
- W4285268934 cites W3184676642 @default.
- W4285268934 cites W3197101904 @default.
- W4285268934 cites W3204653595 @default.
- W4285268934 cites W3214630119 @default.
- W4285268934 cites W4205895592 @default.
- W4285268934 cites W4206423468 @default.
- W4285268934 cites W4211015534 @default.
- W4285268934 cites W4214766447 @default.
- W4285268934 cites W4237262729 @default.
- W4285268934 cites W4244230525 @default.
- W4285268934 cites W4252208101 @default.
- W4285268934 cites W4294541781 @default.
- W4285268934 cites W797456421 @default.
- W4285268934 doi "https://doi.org/10.1109/access.2022.3172438" @default.
- W4285268934 hasPublicationYear "2022" @default.
- W4285268934 type Work @default.
- W4285268934 citedByCount "3" @default.
- W4285268934 countsByYear W42852689342023 @default.
- W4285268934 crossrefType "journal-article" @default.
- W4285268934 hasAuthorship W4285268934A5025033113 @default.