Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285277474> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W4285277474 endingPage "1124" @default.
- W4285277474 startingPage "1111" @default.
- W4285277474 abstract "This study develops a novel data-synthesis-informed-training U-net (DITU-net) based method to automate the wind power curve (WPC) modeling without data pre-processing. The proposed data-synthesis-informed-training (DIT) process has following steps. First, different from traditional studies regarding the WPC modeling as a curve fitting problem, we renovate the WPC modeling formulation from a machine vision aspect. To develop sufficiently diversified training samples, we synthesize supervisory control and data acquisition (SCADA) WPC data based on a set of S-shape functions representing WPCs. These synthesized SCADA data and WPC functions are visualized as images, named the synthesized SCADA WPC and synthesized neat WPC, and paired as training samples. A deep generative model based on U-net is developed to approximate the projection recovering the synthesized neat WPC from the synthesized SCADA WPC. The developed U-net based model is applied into observed SCADA data and can successfully generate the neat WPC. Moreover, a pixel mapping and correction process is developed to derive a mathematical form depicting the neat WPC generated previously. The proposed DITU-net only needs to train once and does not require any data preprocessing in applications. Numerical experiments based on 76 WTs are conducted to validate the superiority of the proposed method via benchmarking against classical WPC modeling methods." @default.
- W4285277474 created "2022-07-14" @default.
- W4285277474 creator A5045545636 @default.
- W4285277474 creator A5080932283 @default.
- W4285277474 creator A5081052708 @default.
- W4285277474 date "2023-03-01" @default.
- W4285277474 modified "2023-09-26" @default.
- W4285277474 title "Generative Wind Power Curve Modeling via Machine Vision: A Deep Convolutional Network Method With Data-Synthesis-Informed-Training" @default.
- W4285277474 cites W180771247 @default.
- W4285277474 cites W1976854751 @default.
- W4285277474 cites W1982870982 @default.
- W4285277474 cites W1985255373 @default.
- W4285277474 cites W1987092188 @default.
- W4285277474 cites W2024027437 @default.
- W4285277474 cites W2044963328 @default.
- W4285277474 cites W2075672667 @default.
- W4285277474 cites W2097466372 @default.
- W4285277474 cites W2098854737 @default.
- W4285277474 cites W2116224582 @default.
- W4285277474 cites W2116540796 @default.
- W4285277474 cites W2169461337 @default.
- W4285277474 cites W2202172816 @default.
- W4285277474 cites W2326041979 @default.
- W4285277474 cites W2416349653 @default.
- W4285277474 cites W2476145847 @default.
- W4285277474 cites W2538056815 @default.
- W4285277474 cites W2556394974 @default.
- W4285277474 cites W2559782006 @default.
- W4285277474 cites W2719445145 @default.
- W4285277474 cites W2794466895 @default.
- W4285277474 cites W2942536656 @default.
- W4285277474 cites W2981208062 @default.
- W4285277474 cites W3112611640 @default.
- W4285277474 doi "https://doi.org/10.1109/tpwrs.2022.3172508" @default.
- W4285277474 hasPublicationYear "2023" @default.
- W4285277474 type Work @default.
- W4285277474 citedByCount "3" @default.
- W4285277474 countsByYear W42852774742022 @default.
- W4285277474 countsByYear W42852774742023 @default.
- W4285277474 crossrefType "journal-article" @default.
- W4285277474 hasAuthorship W4285277474A5045545636 @default.
- W4285277474 hasAuthorship W4285277474A5080932283 @default.
- W4285277474 hasAuthorship W4285277474A5081052708 @default.
- W4285277474 hasConcept C111919701 @default.
- W4285277474 hasConcept C113863187 @default.
- W4285277474 hasConcept C11413529 @default.
- W4285277474 hasConcept C119599485 @default.
- W4285277474 hasConcept C119857082 @default.
- W4285277474 hasConcept C127413603 @default.
- W4285277474 hasConcept C153180895 @default.
- W4285277474 hasConcept C154945302 @default.
- W4285277474 hasConcept C41008148 @default.
- W4285277474 hasConcept C67186912 @default.
- W4285277474 hasConcept C77088390 @default.
- W4285277474 hasConcept C98045186 @default.
- W4285277474 hasConceptScore W4285277474C111919701 @default.
- W4285277474 hasConceptScore W4285277474C113863187 @default.
- W4285277474 hasConceptScore W4285277474C11413529 @default.
- W4285277474 hasConceptScore W4285277474C119599485 @default.
- W4285277474 hasConceptScore W4285277474C119857082 @default.
- W4285277474 hasConceptScore W4285277474C127413603 @default.
- W4285277474 hasConceptScore W4285277474C153180895 @default.
- W4285277474 hasConceptScore W4285277474C154945302 @default.
- W4285277474 hasConceptScore W4285277474C41008148 @default.
- W4285277474 hasConceptScore W4285277474C67186912 @default.
- W4285277474 hasConceptScore W4285277474C77088390 @default.
- W4285277474 hasConceptScore W4285277474C98045186 @default.
- W4285277474 hasFunder F4320335787 @default.
- W4285277474 hasIssue "2" @default.
- W4285277474 hasLocation W42852774741 @default.
- W4285277474 hasOpenAccess W4285277474 @default.
- W4285277474 hasPrimaryLocation W42852774741 @default.
- W4285277474 hasRelatedWork W2077451083 @default.
- W4285277474 hasRelatedWork W2748259487 @default.
- W4285277474 hasRelatedWork W2961085424 @default.
- W4285277474 hasRelatedWork W3046775127 @default.
- W4285277474 hasRelatedWork W4225307033 @default.
- W4285277474 hasRelatedWork W4285260836 @default.
- W4285277474 hasRelatedWork W4286629047 @default.
- W4285277474 hasRelatedWork W4306321456 @default.
- W4285277474 hasRelatedWork W4306674287 @default.
- W4285277474 hasRelatedWork W4224009465 @default.
- W4285277474 hasVolume "38" @default.
- W4285277474 isParatext "false" @default.
- W4285277474 isRetracted "false" @default.
- W4285277474 workType "article" @default.