Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285277680> ?p ?o ?g. }
- W4285277680 endingPage "3208" @default.
- W4285277680 startingPage "3199" @default.
- W4285277680 abstract "The energy Internet (EI) equipment may face threats that attackers poison federated learning (FL) models to disturb electricity load forecasting. To mitigate this vulnerability, it is important to study load forecasting disturbance approaches. This article proposes a side-channel analysis (SCA)-based disturbance approach. First, we design an FL SCA scheme to extract power information from the FL chip running forecasting model. Second, we propose an FL data speculation method using an optimized convolutional neural network trained with SCA information. Third, we design a label-flipping-based poisoning scheme with speculated data characteristics for load forecasting disturbance. Experimental results show attackers can successfully poison and disturb FL-based load forecasting. The average accuracy of EI load data speculation is 99.8%. This work is the first to study EI load forecasting disturbance from an SCA perspective." @default.
- W4285277680 created "2022-07-14" @default.
- W4285277680 creator A5004673608 @default.
- W4285277680 creator A5045461052 @default.
- W4285277680 creator A5051006963 @default.
- W4285277680 creator A5069701505 @default.
- W4285277680 creator A5081182489 @default.
- W4285277680 date "2023-03-01" @default.
- W4285277680 modified "2023-10-09" @default.
- W4285277680 title "SCA-LFD: Side-Channel Analysis-Based Load Forecasting Disturbance in the Energy Internet" @default.
- W4285277680 cites W2007339694 @default.
- W4285277680 cites W2804635567 @default.
- W4285277680 cites W2912213068 @default.
- W4285277680 cites W2921261293 @default.
- W4285277680 cites W3003303706 @default.
- W4285277680 cites W3004796362 @default.
- W4285277680 cites W3008983606 @default.
- W4285277680 cites W3013124972 @default.
- W4285277680 cites W3015584356 @default.
- W4285277680 cites W3030363216 @default.
- W4285277680 cites W3044994156 @default.
- W4285277680 cites W3100279028 @default.
- W4285277680 cites W3103802018 @default.
- W4285277680 cites W3131321252 @default.
- W4285277680 cites W3134070916 @default.
- W4285277680 cites W3156459836 @default.
- W4285277680 cites W4289146347 @default.
- W4285277680 doi "https://doi.org/10.1109/tie.2022.3170641" @default.
- W4285277680 hasPublicationYear "2023" @default.
- W4285277680 type Work @default.
- W4285277680 citedByCount "3" @default.
- W4285277680 countsByYear W42852776802023 @default.
- W4285277680 crossrefType "journal-article" @default.
- W4285277680 hasAuthorship W4285277680A5004673608 @default.
- W4285277680 hasAuthorship W4285277680A5045461052 @default.
- W4285277680 hasAuthorship W4285277680A5051006963 @default.
- W4285277680 hasAuthorship W4285277680A5069701505 @default.
- W4285277680 hasAuthorship W4285277680A5081182489 @default.
- W4285277680 hasConcept C105795698 @default.
- W4285277680 hasConcept C110875604 @default.
- W4285277680 hasConcept C119599485 @default.
- W4285277680 hasConcept C124101348 @default.
- W4285277680 hasConcept C12713177 @default.
- W4285277680 hasConcept C127162648 @default.
- W4285277680 hasConcept C127413603 @default.
- W4285277680 hasConcept C136764020 @default.
- W4285277680 hasConcept C139719470 @default.
- W4285277680 hasConcept C151730666 @default.
- W4285277680 hasConcept C154945302 @default.
- W4285277680 hasConcept C162324750 @default.
- W4285277680 hasConcept C186370098 @default.
- W4285277680 hasConcept C206658404 @default.
- W4285277680 hasConcept C2777601987 @default.
- W4285277680 hasConcept C33923547 @default.
- W4285277680 hasConcept C38652104 @default.
- W4285277680 hasConcept C41008148 @default.
- W4285277680 hasConcept C47941915 @default.
- W4285277680 hasConcept C76155785 @default.
- W4285277680 hasConcept C79403827 @default.
- W4285277680 hasConcept C86803240 @default.
- W4285277680 hasConcept C95713431 @default.
- W4285277680 hasConceptScore W4285277680C105795698 @default.
- W4285277680 hasConceptScore W4285277680C110875604 @default.
- W4285277680 hasConceptScore W4285277680C119599485 @default.
- W4285277680 hasConceptScore W4285277680C124101348 @default.
- W4285277680 hasConceptScore W4285277680C12713177 @default.
- W4285277680 hasConceptScore W4285277680C127162648 @default.
- W4285277680 hasConceptScore W4285277680C127413603 @default.
- W4285277680 hasConceptScore W4285277680C136764020 @default.
- W4285277680 hasConceptScore W4285277680C139719470 @default.
- W4285277680 hasConceptScore W4285277680C151730666 @default.
- W4285277680 hasConceptScore W4285277680C154945302 @default.
- W4285277680 hasConceptScore W4285277680C162324750 @default.
- W4285277680 hasConceptScore W4285277680C186370098 @default.
- W4285277680 hasConceptScore W4285277680C206658404 @default.
- W4285277680 hasConceptScore W4285277680C2777601987 @default.
- W4285277680 hasConceptScore W4285277680C33923547 @default.
- W4285277680 hasConceptScore W4285277680C38652104 @default.
- W4285277680 hasConceptScore W4285277680C41008148 @default.
- W4285277680 hasConceptScore W4285277680C47941915 @default.
- W4285277680 hasConceptScore W4285277680C76155785 @default.
- W4285277680 hasConceptScore W4285277680C79403827 @default.
- W4285277680 hasConceptScore W4285277680C86803240 @default.
- W4285277680 hasConceptScore W4285277680C95713431 @default.
- W4285277680 hasFunder F4320321001 @default.
- W4285277680 hasIssue "3" @default.
- W4285277680 hasLocation W42852776801 @default.
- W4285277680 hasOpenAccess W4285277680 @default.
- W4285277680 hasPrimaryLocation W42852776801 @default.
- W4285277680 hasRelatedWork W2003989576 @default.
- W4285277680 hasRelatedWork W2076161440 @default.
- W4285277680 hasRelatedWork W2147782221 @default.
- W4285277680 hasRelatedWork W2381171456 @default.
- W4285277680 hasRelatedWork W2489870153 @default.
- W4285277680 hasRelatedWork W2799624154 @default.
- W4285277680 hasRelatedWork W3091416521 @default.
- W4285277680 hasRelatedWork W3107943460 @default.
- W4285277680 hasRelatedWork W4243792164 @default.