Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285277816> ?p ?o ?g. }
- W4285277816 endingPage "2882" @default.
- W4285277816 startingPage "2869" @default.
- W4285277816 abstract "Hammerstein model with a static nonlinearity followed by a linear filter is commonly used in numerous applications. This paper focuses on adaptive filtering techniques for parameter identification of Hammerstein systems and output prediction of nonlinear systems. By formulating the underlying filtering problem as a recursive bilinear least-squares optimization with the non-convex feasible region constraint, we develop a recursive non-convex projected least-squares (RncPLS) algorithm based on alternating direction method of multipliers (ADMM). The RncPLS algorithm alternates between implementing ridge regression and projecting on the non-convex feasible set, which successively refines the system parameters. The convergence and accuracy properties of the proposed RncPLS algorithm are theoretically investigated. Moreover, extensive simulation results in the context of system identification, nonlinear predication, and acoustic echo cancellation, are also included to demonstrate the performance characteristics of the proposed algorithm." @default.
- W4285277816 created "2022-07-14" @default.
- W4285277816 creator A5060826818 @default.
- W4285277816 creator A5066585954 @default.
- W4285277816 date "2022-01-01" @default.
- W4285277816 modified "2023-09-23" @default.
- W4285277816 title "Adaptive Hammerstein Filtering via Recursive Non-Convex Projection" @default.
- W4285277816 cites W1505168768 @default.
- W4285277816 cites W1964494592 @default.
- W4285277816 cites W1965748119 @default.
- W4285277816 cites W1974260473 @default.
- W4285277816 cites W1977312816 @default.
- W4285277816 cites W1994984923 @default.
- W4285277816 cites W1999482631 @default.
- W4285277816 cites W2008392211 @default.
- W4285277816 cites W2025860446 @default.
- W4285277816 cites W2032586086 @default.
- W4285277816 cites W2073821686 @default.
- W4285277816 cites W2098940131 @default.
- W4285277816 cites W2109146660 @default.
- W4285277816 cites W2110626713 @default.
- W4285277816 cites W2111063670 @default.
- W4285277816 cites W2123351796 @default.
- W4285277816 cites W2125733767 @default.
- W4285277816 cites W2129005223 @default.
- W4285277816 cites W2132921044 @default.
- W4285277816 cites W2136339291 @default.
- W4285277816 cites W2136894486 @default.
- W4285277816 cites W2152921273 @default.
- W4285277816 cites W2170909346 @default.
- W4285277816 cites W2207444885 @default.
- W4285277816 cites W2321821268 @default.
- W4285277816 cites W2344812095 @default.
- W4285277816 cites W2553784559 @default.
- W4285277816 cites W2606965020 @default.
- W4285277816 cites W2607059137 @default.
- W4285277816 cites W2764221283 @default.
- W4285277816 cites W2774281640 @default.
- W4285277816 cites W2792711521 @default.
- W4285277816 cites W2915330149 @default.
- W4285277816 cites W2966067846 @default.
- W4285277816 cites W3002096428 @default.
- W4285277816 cites W3011176555 @default.
- W4285277816 cites W3013730049 @default.
- W4285277816 cites W3083531398 @default.
- W4285277816 cites W4206679341 @default.
- W4285277816 cites W4292363360 @default.
- W4285277816 cites W625600254 @default.
- W4285277816 doi "https://doi.org/10.1109/tsp.2022.3180195" @default.
- W4285277816 hasPublicationYear "2022" @default.
- W4285277816 type Work @default.
- W4285277816 citedByCount "3" @default.
- W4285277816 countsByYear W42852778162022 @default.
- W4285277816 countsByYear W42852778162023 @default.
- W4285277816 crossrefType "journal-article" @default.
- W4285277816 hasAuthorship W4285277816A5060826818 @default.
- W4285277816 hasAuthorship W4285277816A5066585954 @default.
- W4285277816 hasConcept C102248274 @default.
- W4285277816 hasConcept C106131492 @default.
- W4285277816 hasConcept C112680207 @default.
- W4285277816 hasConcept C11413529 @default.
- W4285277816 hasConcept C119247159 @default.
- W4285277816 hasConcept C121332964 @default.
- W4285277816 hasConcept C126255220 @default.
- W4285277816 hasConcept C145249878 @default.
- W4285277816 hasConcept C151730666 @default.
- W4285277816 hasConcept C157972887 @default.
- W4285277816 hasConcept C158622935 @default.
- W4285277816 hasConcept C162324750 @default.
- W4285277816 hasConcept C2524010 @default.
- W4285277816 hasConcept C2777303404 @default.
- W4285277816 hasConcept C2779343474 @default.
- W4285277816 hasConcept C31972630 @default.
- W4285277816 hasConcept C33923547 @default.
- W4285277816 hasConcept C41008148 @default.
- W4285277816 hasConcept C50522688 @default.
- W4285277816 hasConcept C57493831 @default.
- W4285277816 hasConcept C62520636 @default.
- W4285277816 hasConcept C67186912 @default.
- W4285277816 hasConcept C77088390 @default.
- W4285277816 hasConcept C86803240 @default.
- W4285277816 hasConceptScore W4285277816C102248274 @default.
- W4285277816 hasConceptScore W4285277816C106131492 @default.
- W4285277816 hasConceptScore W4285277816C112680207 @default.
- W4285277816 hasConceptScore W4285277816C11413529 @default.
- W4285277816 hasConceptScore W4285277816C119247159 @default.
- W4285277816 hasConceptScore W4285277816C121332964 @default.
- W4285277816 hasConceptScore W4285277816C126255220 @default.
- W4285277816 hasConceptScore W4285277816C145249878 @default.
- W4285277816 hasConceptScore W4285277816C151730666 @default.
- W4285277816 hasConceptScore W4285277816C157972887 @default.
- W4285277816 hasConceptScore W4285277816C158622935 @default.
- W4285277816 hasConceptScore W4285277816C162324750 @default.
- W4285277816 hasConceptScore W4285277816C2524010 @default.
- W4285277816 hasConceptScore W4285277816C2777303404 @default.
- W4285277816 hasConceptScore W4285277816C2779343474 @default.
- W4285277816 hasConceptScore W4285277816C31972630 @default.
- W4285277816 hasConceptScore W4285277816C33923547 @default.