Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285278796> ?p ?o ?g. }
- W4285278796 endingPage "5729" @default.
- W4285278796 startingPage "5711" @default.
- W4285278796 abstract "Ballistic target recognition (BTR) is critical to the ballistic missile defense system. The challenge of this task is to distinguish warheads from numerous unknown confusing targets within a short observing time. The micromotion feature is proved to be effective for this task. However, traditional methods need a long observing time to acquire enough information for the recognition because of using low-dimensional features. In addition, these model-driven methods cannot handle irregular ballistic targets, such as debris. In this article, we propose a BTR scheme, which characterizes the micromotion features with a higher dimensional representation, i.e., the time–range–velocity–power 4-D point cloud, using the randomized stepped frequency radar. The higher dimensional information contained in the 4-D point cloud can reduce the required observing time. Besides, this scheme combines the model-driven method with a data-driven deep neural network to meet the challenge of model mismatch caused by irregular targets. As a result, the proposed BTR scheme is time efficient and robust, which has been proved on an electromagnetic simulation dataset." @default.
- W4285278796 created "2022-07-14" @default.
- W4285278796 creator A5014248497 @default.
- W4285278796 creator A5035903470 @default.
- W4285278796 creator A5042966863 @default.
- W4285278796 date "2022-12-01" @default.
- W4285278796 modified "2023-09-29" @default.
- W4285278796 title "Ballistic Target Recognition Based on 4-D Point Cloud Using Randomized Stepped Frequency Radar" @default.
- W4285278796 cites W1508177461 @default.
- W4285278796 cites W1644641054 @default.
- W4285278796 cites W1971022913 @default.
- W4285278796 cites W1978025251 @default.
- W4285278796 cites W1987967689 @default.
- W4285278796 cites W2012589245 @default.
- W4285278796 cites W2036544393 @default.
- W4285278796 cites W2037606967 @default.
- W4285278796 cites W2047002226 @default.
- W4285278796 cites W2047022092 @default.
- W4285278796 cites W2059178187 @default.
- W4285278796 cites W2061601368 @default.
- W4285278796 cites W2093447358 @default.
- W4285278796 cites W2102882097 @default.
- W4285278796 cites W2106219618 @default.
- W4285278796 cites W2110646474 @default.
- W4285278796 cites W2116148865 @default.
- W4285278796 cites W2128659236 @default.
- W4285278796 cites W2131084851 @default.
- W4285278796 cites W2133047848 @default.
- W4285278796 cites W2137671125 @default.
- W4285278796 cites W2153594606 @default.
- W4285278796 cites W2194775991 @default.
- W4285278796 cites W2203224402 @default.
- W4285278796 cites W2414129030 @default.
- W4285278796 cites W2587503573 @default.
- W4285278796 cites W2594265094 @default.
- W4285278796 cites W2776481231 @default.
- W4285278796 cites W2891657227 @default.
- W4285278796 cites W2896408289 @default.
- W4285278796 cites W2899909567 @default.
- W4285278796 cites W2911511970 @default.
- W4285278796 cites W2922230884 @default.
- W4285278796 cites W2957484200 @default.
- W4285278796 cites W2962883148 @default.
- W4285278796 cites W2966690819 @default.
- W4285278796 cites W2974484813 @default.
- W4285278796 cites W2974907428 @default.
- W4285278796 cites W3001606623 @default.
- W4285278796 cites W3034486798 @default.
- W4285278796 cites W3034539570 @default.
- W4285278796 cites W3122639836 @default.
- W4285278796 cites W3145358086 @default.
- W4285278796 cites W4206588109 @default.
- W4285278796 cites W89947016 @default.
- W4285278796 doi "https://doi.org/10.1109/taes.2022.3178971" @default.
- W4285278796 hasPublicationYear "2022" @default.
- W4285278796 type Work @default.
- W4285278796 citedByCount "0" @default.
- W4285278796 crossrefType "journal-article" @default.
- W4285278796 hasAuthorship W4285278796A5014248497 @default.
- W4285278796 hasAuthorship W4285278796A5035903470 @default.
- W4285278796 hasAuthorship W4285278796A5042966863 @default.
- W4285278796 hasConcept C111919701 @default.
- W4285278796 hasConcept C122136912 @default.
- W4285278796 hasConcept C127413603 @default.
- W4285278796 hasConcept C131979681 @default.
- W4285278796 hasConcept C138885662 @default.
- W4285278796 hasConcept C146978453 @default.
- W4285278796 hasConcept C154945302 @default.
- W4285278796 hasConcept C17744445 @default.
- W4285278796 hasConcept C199539241 @default.
- W4285278796 hasConcept C201995342 @default.
- W4285278796 hasConcept C2776359362 @default.
- W4285278796 hasConcept C2776401178 @default.
- W4285278796 hasConcept C2778857364 @default.
- W4285278796 hasConcept C2780451532 @default.
- W4285278796 hasConcept C41008148 @default.
- W4285278796 hasConcept C41895202 @default.
- W4285278796 hasConcept C554190296 @default.
- W4285278796 hasConcept C76155785 @default.
- W4285278796 hasConcept C79974875 @default.
- W4285278796 hasConcept C94625758 @default.
- W4285278796 hasConceptScore W4285278796C111919701 @default.
- W4285278796 hasConceptScore W4285278796C122136912 @default.
- W4285278796 hasConceptScore W4285278796C127413603 @default.
- W4285278796 hasConceptScore W4285278796C131979681 @default.
- W4285278796 hasConceptScore W4285278796C138885662 @default.
- W4285278796 hasConceptScore W4285278796C146978453 @default.
- W4285278796 hasConceptScore W4285278796C154945302 @default.
- W4285278796 hasConceptScore W4285278796C17744445 @default.
- W4285278796 hasConceptScore W4285278796C199539241 @default.
- W4285278796 hasConceptScore W4285278796C201995342 @default.
- W4285278796 hasConceptScore W4285278796C2776359362 @default.
- W4285278796 hasConceptScore W4285278796C2776401178 @default.
- W4285278796 hasConceptScore W4285278796C2778857364 @default.
- W4285278796 hasConceptScore W4285278796C2780451532 @default.
- W4285278796 hasConceptScore W4285278796C41008148 @default.
- W4285278796 hasConceptScore W4285278796C41895202 @default.
- W4285278796 hasConceptScore W4285278796C554190296 @default.