Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285281980> ?p ?o ?g. }
- W4285281980 endingPage "62847" @default.
- W4285281980 startingPage "62831" @default.
- W4285281980 abstract "Machine learning algorithms have been used for the detection (and possibly) prediction of Alzheimer’s disease using genotype information, with the potential to enhance the outcome prediction. However, detailed research about the analysis and the detection of Alzheimer’s disease using genetic data is still in its primitive stage. The aim of this paper is to examine the scientific literature on the use of various machine learning approaches for the prediction of Alzheimer’s disease based solely on genetic data. To identify gaps in the literature, critically appraise the reporting and methods of the algorithms, and provide the foundation for a wider research programme focused on developing novel machine learning based predictive algorithms in Alzheimer’s disease. In our study between January 1, 2010, until September 21, 2021, we have reviewed different articles within PubMed, Web of Science, and Scopus to research into keywords and phrases linked to Alzheimer’s disease and machine learning tools, including Artificial Neural Networks, boosting, and random forests. Articles were reviewed for inclusion, then retrieved, and assessed for risk of bias using Preferred Reporting Items for Systematic Reviews and Meta-analyses criteria. A pool of 150 abstracts, 65 full texts was evaluated and 24 studies were considered in the review. Machine learning methods in the reviewed papers performed in a wide range of ways (0.59 to 0.98 AUC). Our study indicated that high risk of bias in the analysis can be linked to feature selection, hyperparameter search and validation methods." @default.
- W4285281980 created "2022-07-14" @default.
- W4285281980 creator A5025789067 @default.
- W4285281980 creator A5035982173 @default.
- W4285281980 creator A5040202601 @default.
- W4285281980 creator A5083103834 @default.
- W4285281980 date "2022-01-01" @default.
- W4285281980 modified "2023-09-26" @default.
- W4285281980 title "Machine Learning Approaches and Applications in Genome Wide Association Study for Alzheimer’s Disease: A Systematic Review" @default.
- W4285281980 cites W1492273171 @default.
- W4285281980 cites W1528288284 @default.
- W4285281980 cites W1529106245 @default.
- W4285281980 cites W1573528873 @default.
- W4285281980 cites W1576244270 @default.
- W4285281980 cites W1901616594 @default.
- W4285281980 cites W1977000084 @default.
- W4285281980 cites W1979254666 @default.
- W4285281980 cites W1981981738 @default.
- W4285281980 cites W1991343203 @default.
- W4285281980 cites W2007872832 @default.
- W4285281980 cites W2024268442 @default.
- W4285281980 cites W2046711245 @default.
- W4285281980 cites W2059659542 @default.
- W4285281980 cites W2063575312 @default.
- W4285281980 cites W2123202052 @default.
- W4285281980 cites W2123794412 @default.
- W4285281980 cites W2129727551 @default.
- W4285281980 cites W2136936410 @default.
- W4285281980 cites W2140718540 @default.
- W4285281980 cites W2144430639 @default.
- W4285281980 cites W2150798249 @default.
- W4285281980 cites W2152905639 @default.
- W4285281980 cites W2161920802 @default.
- W4285281980 cites W2171642892 @default.
- W4285281980 cites W2216946510 @default.
- W4285281980 cites W2297716127 @default.
- W4285281980 cites W2487770199 @default.
- W4285281980 cites W2516938563 @default.
- W4285281980 cites W2616923975 @default.
- W4285281980 cites W2769098366 @default.
- W4285281980 cites W2786204509 @default.
- W4285281980 cites W2787980651 @default.
- W4285281980 cites W2789970635 @default.
- W4285281980 cites W2791315675 @default.
- W4285281980 cites W2807780860 @default.
- W4285281980 cites W2884571067 @default.
- W4285281980 cites W2889104897 @default.
- W4285281980 cites W2899768131 @default.
- W4285281980 cites W2907554860 @default.
- W4285281980 cites W2908002252 @default.
- W4285281980 cites W2908659529 @default.
- W4285281980 cites W2913997948 @default.
- W4285281980 cites W2919115771 @default.
- W4285281980 cites W2922844241 @default.
- W4285281980 cites W2928842276 @default.
- W4285281980 cites W2936086693 @default.
- W4285281980 cites W2941198554 @default.
- W4285281980 cites W2948646149 @default.
- W4285281980 cites W2962843949 @default.
- W4285281980 cites W2966924762 @default.
- W4285281980 cites W2969097171 @default.
- W4285281980 cites W2983579676 @default.
- W4285281980 cites W2984432074 @default.
- W4285281980 cites W2995918088 @default.
- W4285281980 cites W2997786719 @default.
- W4285281980 cites W3008120379 @default.
- W4285281980 cites W3012879287 @default.
- W4285281980 cites W3015811708 @default.
- W4285281980 cites W3015851278 @default.
- W4285281980 cites W3020176164 @default.
- W4285281980 cites W3033252662 @default.
- W4285281980 cites W3037114781 @default.
- W4285281980 cites W3080627676 @default.
- W4285281980 cites W3088475214 @default.
- W4285281980 cites W3090929305 @default.
- W4285281980 cites W3094108931 @default.
- W4285281980 cites W3107058614 @default.
- W4285281980 cites W3140854437 @default.
- W4285281980 cites W3184344090 @default.
- W4285281980 cites W3185928481 @default.
- W4285281980 cites W3191110218 @default.
- W4285281980 cites W3205210389 @default.
- W4285281980 cites W4220769256 @default.
- W4285281980 doi "https://doi.org/10.1109/access.2022.3182543" @default.
- W4285281980 hasPublicationYear "2022" @default.
- W4285281980 type Work @default.
- W4285281980 citedByCount "2" @default.
- W4285281980 countsByYear W42852819802022 @default.
- W4285281980 countsByYear W42852819802023 @default.
- W4285281980 crossrefType "journal-article" @default.
- W4285281980 hasAuthorship W4285281980A5025789067 @default.
- W4285281980 hasAuthorship W4285281980A5035982173 @default.
- W4285281980 hasAuthorship W4285281980A5040202601 @default.
- W4285281980 hasAuthorship W4285281980A5083103834 @default.
- W4285281980 hasBestOaLocation W42852819801 @default.
- W4285281980 hasConcept C119857082 @default.
- W4285281980 hasConcept C142724271 @default.
- W4285281980 hasConcept C148483581 @default.