Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285283605> ?p ?o ?g. }
- W4285283605 endingPage "16" @default.
- W4285283605 startingPage "1" @default.
- W4285283605 abstract "Due to the limitation of technology and budget, it is often difficult for sensors of a single remote sensing satellite to have both high temporal resolution and high spatial (HTHS) resolution at the same time. In this paper, we proposed a new Multi-level Feature Fusion with Generative Adversarial Network (MLFF-GAN) for generating fusion HTHS images. MLFF-GAN mainly uses U-net-like architecture and its generator is composed of three stages: feature extraction, feature fusion, and image reconstruction. In feature extraction and reconstruction stage, the generator employs the encoding and decoding structure to extract three groups of multi-level features, which can cope with the huge difference of resolution between high-resolution images and low-resolution images. In the feature fusion stage, Adaptive Instance Normalization (AdaIN) block is designed to learn the global distribution relationship between multi-temporal images, and an attention module (AM) is used to learn the local information weights for the change of small areas. The proposed MLFF-GAN was tested on two Landsat and MODIS datasets. Some state-of-the-art algorithms are comprehensively compared with MLFF-GAN. We also carried on the ablation experiment to test the effectiveness of different sub-module in MLFF-GAN. The experiment results and ablation analysis show the better performances of the proposed method when compared with other methods. The code is available at https://github.com/songbingze/MLFF-GAN." @default.
- W4285283605 created "2022-07-14" @default.
- W4285283605 creator A5009116003 @default.
- W4285283605 creator A5016623526 @default.
- W4285283605 creator A5023925857 @default.
- W4285283605 creator A5027810506 @default.
- W4285283605 creator A5036283525 @default.
- W4285283605 creator A5045830368 @default.
- W4285283605 creator A5048350041 @default.
- W4285283605 creator A5071669663 @default.
- W4285283605 date "2022-01-01" @default.
- W4285283605 modified "2023-10-18" @default.
- W4285283605 title "MLFF-GAN: A Multilevel Feature Fusion With GAN for Spatiotemporal Remote Sensing Images" @default.
- W4285283605 cites W1563899710 @default.
- W4285283605 cites W1580389772 @default.
- W4285283605 cites W1588434184 @default.
- W4285283605 cites W1970515153 @default.
- W4285283605 cites W1980129283 @default.
- W4285283605 cites W1980989025 @default.
- W4285283605 cites W1982956952 @default.
- W4285283605 cites W1991868762 @default.
- W4285283605 cites W2003224325 @default.
- W4285283605 cites W2012188213 @default.
- W4285283605 cites W2017193019 @default.
- W4285283605 cites W2031596845 @default.
- W4285283605 cites W2056811372 @default.
- W4285283605 cites W2058822683 @default.
- W4285283605 cites W2082263501 @default.
- W4285283605 cites W2088603520 @default.
- W4285283605 cites W2095483845 @default.
- W4285283605 cites W2126340432 @default.
- W4285283605 cites W2133665775 @default.
- W4285283605 cites W2194775991 @default.
- W4285283605 cites W2200350976 @default.
- W4285283605 cites W2224309144 @default.
- W4285283605 cites W2331128040 @default.
- W4285283605 cites W2404325781 @default.
- W4285283605 cites W2518897583 @default.
- W4285283605 cites W2563658020 @default.
- W4285283605 cites W2593414223 @default.
- W4285283605 cites W2603777577 @default.
- W4285283605 cites W2767886251 @default.
- W4285283605 cites W2769341244 @default.
- W4285283605 cites W2774052553 @default.
- W4285283605 cites W2793445582 @default.
- W4285283605 cites W2843468165 @default.
- W4285283605 cites W2891158090 @default.
- W4285283605 cites W2939570633 @default.
- W4285283605 cites W2962793481 @default.
- W4285283605 cites W2963073614 @default.
- W4285283605 cites W2963372104 @default.
- W4285283605 cites W2963470893 @default.
- W4285283605 cites W2990083984 @default.
- W4285283605 cites W2992343265 @default.
- W4285283605 cites W3011030181 @default.
- W4285283605 cites W3043344758 @default.
- W4285283605 cites W3047166575 @default.
- W4285283605 cites W3088021634 @default.
- W4285283605 cites W3088318080 @default.
- W4285283605 cites W3123173184 @default.
- W4285283605 cites W3130063696 @default.
- W4285283605 cites W3183086098 @default.
- W4285283605 cites W3183600011 @default.
- W4285283605 cites W3209705280 @default.
- W4285283605 doi "https://doi.org/10.1109/tgrs.2022.3169916" @default.
- W4285283605 hasPublicationYear "2022" @default.
- W4285283605 type Work @default.
- W4285283605 citedByCount "7" @default.
- W4285283605 countsByYear W42852836052022 @default.
- W4285283605 countsByYear W42852836052023 @default.
- W4285283605 crossrefType "journal-article" @default.
- W4285283605 hasAuthorship W4285283605A5009116003 @default.
- W4285283605 hasAuthorship W4285283605A5016623526 @default.
- W4285283605 hasAuthorship W4285283605A5023925857 @default.
- W4285283605 hasAuthorship W4285283605A5027810506 @default.
- W4285283605 hasAuthorship W4285283605A5036283525 @default.
- W4285283605 hasAuthorship W4285283605A5045830368 @default.
- W4285283605 hasAuthorship W4285283605A5048350041 @default.
- W4285283605 hasAuthorship W4285283605A5071669663 @default.
- W4285283605 hasConcept C11413529 @default.
- W4285283605 hasConcept C115961682 @default.
- W4285283605 hasConcept C127313418 @default.
- W4285283605 hasConcept C136886441 @default.
- W4285283605 hasConcept C138885662 @default.
- W4285283605 hasConcept C144024400 @default.
- W4285283605 hasConcept C153180895 @default.
- W4285283605 hasConcept C154945302 @default.
- W4285283605 hasConcept C158525013 @default.
- W4285283605 hasConcept C19165224 @default.
- W4285283605 hasConcept C205372480 @default.
- W4285283605 hasConcept C2524010 @default.
- W4285283605 hasConcept C2776401178 @default.
- W4285283605 hasConcept C2777210771 @default.
- W4285283605 hasConcept C31972630 @default.
- W4285283605 hasConcept C33923547 @default.
- W4285283605 hasConcept C41008148 @default.
- W4285283605 hasConcept C41895202 @default.
- W4285283605 hasConcept C52622490 @default.