Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285284493> ?p ?o ?g. }
- W4285284493 endingPage "16243" @default.
- W4285284493 startingPage "16234" @default.
- W4285284493 abstract "In this paper, we propose a dataset processing method for odor recognition using neural networks, which extracts the sensor multi-dimensional temperature information and high-dimensional time series information during the response process. In this “sniffing” system, 4 different Micro-Electro-Mechanical System (MEMS) Metal-Oxide-Semiconductor (MOX) gas sensors are utilized, and 4 different heating voltages are applied to the sensor array. After classifying 6 chemical gases closely related to food at 3 different concentrations each, we introduced 10 kinds of food for classification. To construct an abstract odor factor map as a feature map of odor samples, we process each group of different relatively low-bandwidth sensor signals with smoothing spline, Gaussian window, etc. By Inputting the feature map into a specific convolutional neural network, we successfully achieve 98.7% accuracy in chemical gas recognition and 95.8% accuracy in food classification." @default.
- W4285284493 created "2022-07-14" @default.
- W4285284493 creator A5004616267 @default.
- W4285284493 creator A5018632321 @default.
- W4285284493 creator A5024394252 @default.
- W4285284493 creator A5033326673 @default.
- W4285284493 creator A5039020026 @default.
- W4285284493 creator A5042656486 @default.
- W4285284493 creator A5057518297 @default.
- W4285284493 creator A5075301633 @default.
- W4285284493 date "2022-08-15" @default.
- W4285284493 modified "2023-10-17" @default.
- W4285284493 title "The Recognition of Different Odor Using Convolutional Neural Networks Extracted From Time and Temperature Features" @default.
- W4285284493 cites W1767472777 @default.
- W4285284493 cites W1967376992 @default.
- W4285284493 cites W1978371528 @default.
- W4285284493 cites W2013141176 @default.
- W4285284493 cites W2025058003 @default.
- W4285284493 cites W2026685364 @default.
- W4285284493 cites W2081142660 @default.
- W4285284493 cites W2081895431 @default.
- W4285284493 cites W2126890507 @default.
- W4285284493 cites W2267715667 @default.
- W4285284493 cites W2590117956 @default.
- W4285284493 cites W2727701357 @default.
- W4285284493 cites W2743658935 @default.
- W4285284493 cites W2770886451 @default.
- W4285284493 cites W2901133964 @default.
- W4285284493 cites W2908617491 @default.
- W4285284493 cites W2911387252 @default.
- W4285284493 cites W2957460636 @default.
- W4285284493 cites W2963587312 @default.
- W4285284493 cites W2968747450 @default.
- W4285284493 cites W3019390977 @default.
- W4285284493 cites W3084929217 @default.
- W4285284493 cites W3090417167 @default.
- W4285284493 cites W3159942068 @default.
- W4285284493 cites W3166944159 @default.
- W4285284493 cites W3171019390 @default.
- W4285284493 cites W3189266413 @default.
- W4285284493 cites W3190301149 @default.
- W4285284493 cites W3192098487 @default.
- W4285284493 cites W4206996605 @default.
- W4285284493 doi "https://doi.org/10.1109/jsen.2022.3188464" @default.
- W4285284493 hasPublicationYear "2022" @default.
- W4285284493 type Work @default.
- W4285284493 citedByCount "2" @default.
- W4285284493 countsByYear W42852844932023 @default.
- W4285284493 crossrefType "journal-article" @default.
- W4285284493 hasAuthorship W4285284493A5004616267 @default.
- W4285284493 hasAuthorship W4285284493A5018632321 @default.
- W4285284493 hasAuthorship W4285284493A5024394252 @default.
- W4285284493 hasAuthorship W4285284493A5033326673 @default.
- W4285284493 hasAuthorship W4285284493A5039020026 @default.
- W4285284493 hasAuthorship W4285284493A5042656486 @default.
- W4285284493 hasAuthorship W4285284493A5057518297 @default.
- W4285284493 hasAuthorship W4285284493A5075301633 @default.
- W4285284493 hasConcept C119857082 @default.
- W4285284493 hasConcept C153180895 @default.
- W4285284493 hasConcept C154945302 @default.
- W4285284493 hasConcept C178790620 @default.
- W4285284493 hasConcept C185592680 @default.
- W4285284493 hasConcept C2778916471 @default.
- W4285284493 hasConcept C31972630 @default.
- W4285284493 hasConcept C41008148 @default.
- W4285284493 hasConcept C50644808 @default.
- W4285284493 hasConcept C52622490 @default.
- W4285284493 hasConcept C66251956 @default.
- W4285284493 hasConcept C81363708 @default.
- W4285284493 hasConceptScore W4285284493C119857082 @default.
- W4285284493 hasConceptScore W4285284493C153180895 @default.
- W4285284493 hasConceptScore W4285284493C154945302 @default.
- W4285284493 hasConceptScore W4285284493C178790620 @default.
- W4285284493 hasConceptScore W4285284493C185592680 @default.
- W4285284493 hasConceptScore W4285284493C2778916471 @default.
- W4285284493 hasConceptScore W4285284493C31972630 @default.
- W4285284493 hasConceptScore W4285284493C41008148 @default.
- W4285284493 hasConceptScore W4285284493C50644808 @default.
- W4285284493 hasConceptScore W4285284493C52622490 @default.
- W4285284493 hasConceptScore W4285284493C66251956 @default.
- W4285284493 hasConceptScore W4285284493C81363708 @default.
- W4285284493 hasFunder F4320321001 @default.
- W4285284493 hasFunder F4320335777 @default.
- W4285284493 hasIssue "16" @default.
- W4285284493 hasLocation W42852844931 @default.
- W4285284493 hasOpenAccess W4285284493 @default.
- W4285284493 hasPrimaryLocation W42852844931 @default.
- W4285284493 hasRelatedWork W1964120219 @default.
- W4285284493 hasRelatedWork W2000165426 @default.
- W4285284493 hasRelatedWork W2144059113 @default.
- W4285284493 hasRelatedWork W2146076056 @default.
- W4285284493 hasRelatedWork W2406522397 @default.
- W4285284493 hasRelatedWork W2767651786 @default.
- W4285284493 hasRelatedWork W2811390910 @default.
- W4285284493 hasRelatedWork W2912288872 @default.
- W4285284493 hasRelatedWork W3003836766 @default.
- W4285284493 hasRelatedWork W4312376745 @default.
- W4285284493 hasVolume "22" @default.