Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285285502> ?p ?o ?g. }
- W4285285502 endingPage "22594" @default.
- W4285285502 startingPage "22582" @default.
- W4285285502 abstract "Indoor localization is a crucial component of IoT applications in many areas, such as healthcare, energy management, and security control. Passive infrared (PIR) sensor has been employed for a location estimation due to its cost effectiveness, low power consumption, and low electromagnetic interference. Compared with its binary output, PIR analog output which is an output voltage generated by a PIR sensor when its sensing elements detect changes in temperature in an environment can provide more information regarding a person’s location. However, only a few works focus on using analog signals for location estimation. During the past several years, deep learning approaches have emerged and achieved outstanding results in many applications. In this article, we harness the power of deep learning and propose a deep CNN-LSTM architecture for PIR-based indoor location estimation. In our architecture, an upper CNN network can extract features from PIR analog output automatically while a lower LSTM network can learn temporal dependencies between the extracted features. To evaluate the feasibility and performance of our proposed method, we conduct four different sets of experiments. Our results show that the proposed method can efficiently handle complex cases and can achieve the mean distance error of 0.23 m, and 80% of distance errors are within 0.4 m." @default.
- W4285285502 created "2022-07-14" @default.
- W4285285502 creator A5040342340 @default.
- W4285285502 creator A5080744092 @default.
- W4285285502 creator A5082853606 @default.
- W4285285502 creator A5088916326 @default.
- W4285285502 date "2022-11-15" @default.
- W4285285502 modified "2023-10-16" @default.
- W4285285502 title "Deep CNN-LSTM Network for Indoor Location Estimation Using Analog Signals of Passive Infrared Sensors" @default.
- W4285285502 cites W124239797 @default.
- W4285285502 cites W1936750108 @default.
- W4285285502 cites W1970398760 @default.
- W4285285502 cites W1975993212 @default.
- W4285285502 cites W1976551047 @default.
- W4285285502 cites W1981451574 @default.
- W4285285502 cites W1981842164 @default.
- W4285285502 cites W1987525585 @default.
- W4285285502 cites W1988348999 @default.
- W4285285502 cites W2003307570 @default.
- W4285285502 cites W2007221293 @default.
- W4285285502 cites W2014758824 @default.
- W4285285502 cites W2032306167 @default.
- W4285285502 cites W2039506494 @default.
- W4285285502 cites W2040975718 @default.
- W4285285502 cites W2044846595 @default.
- W4285285502 cites W2051376734 @default.
- W4285285502 cites W2058682657 @default.
- W4285285502 cites W2078712147 @default.
- W4285285502 cites W2107109577 @default.
- W4285285502 cites W2108787495 @default.
- W4285285502 cites W2126300356 @default.
- W4285285502 cites W2129045955 @default.
- W4285285502 cites W2136098873 @default.
- W4285285502 cites W2146744711 @default.
- W4285285502 cites W2151756758 @default.
- W4285285502 cites W2152151699 @default.
- W4285285502 cites W2153452377 @default.
- W4285285502 cites W2157291767 @default.
- W4285285502 cites W2170102584 @default.
- W4285285502 cites W2170589361 @default.
- W4285285502 cites W2207718193 @default.
- W4285285502 cites W2290207474 @default.
- W4285285502 cites W2330391155 @default.
- W4285285502 cites W2509382177 @default.
- W4285285502 cites W2517587710 @default.
- W4285285502 cites W2526606216 @default.
- W4285285502 cites W2539664423 @default.
- W4285285502 cites W2558860686 @default.
- W4285285502 cites W2558891025 @default.
- W4285285502 cites W2764026391 @default.
- W4285285502 cites W2808437786 @default.
- W4285285502 cites W2890784233 @default.
- W4285285502 cites W2950392941 @default.
- W4285285502 cites W3017005841 @default.
- W4285285502 cites W3023555628 @default.
- W4285285502 cites W3035471470 @default.
- W4285285502 cites W3047541574 @default.
- W4285285502 cites W3080325474 @default.
- W4285285502 cites W3108914020 @default.
- W4285285502 cites W3123690003 @default.
- W4285285502 cites W3131926350 @default.
- W4285285502 cites W3134663493 @default.
- W4285285502 cites W3135782568 @default.
- W4285285502 cites W3136021864 @default.
- W4285285502 cites W3172767416 @default.
- W4285285502 cites W3208954537 @default.
- W4285285502 doi "https://doi.org/10.1109/jiot.2022.3183148" @default.
- W4285285502 hasPublicationYear "2022" @default.
- W4285285502 type Work @default.
- W4285285502 citedByCount "4" @default.
- W4285285502 countsByYear W42852855022023 @default.
- W4285285502 crossrefType "journal-article" @default.
- W4285285502 hasAuthorship W4285285502A5040342340 @default.
- W4285285502 hasAuthorship W4285285502A5080744092 @default.
- W4285285502 hasAuthorship W4285285502A5082853606 @default.
- W4285285502 hasAuthorship W4285285502A5088916326 @default.
- W4285285502 hasConcept C108583219 @default.
- W4285285502 hasConcept C120665830 @default.
- W4285285502 hasConcept C121332964 @default.
- W4285285502 hasConcept C127162648 @default.
- W4285285502 hasConcept C153180895 @default.
- W4285285502 hasConcept C154945302 @default.
- W4285285502 hasConcept C168167062 @default.
- W4285285502 hasConcept C192209626 @default.
- W4285285502 hasConcept C24590314 @default.
- W4285285502 hasConcept C31258907 @default.
- W4285285502 hasConcept C32022120 @default.
- W4285285502 hasConcept C41008148 @default.
- W4285285502 hasConcept C76155785 @default.
- W4285285502 hasConcept C79403827 @default.
- W4285285502 hasConcept C97355855 @default.
- W4285285502 hasConceptScore W4285285502C108583219 @default.
- W4285285502 hasConceptScore W4285285502C120665830 @default.
- W4285285502 hasConceptScore W4285285502C121332964 @default.
- W4285285502 hasConceptScore W4285285502C127162648 @default.
- W4285285502 hasConceptScore W4285285502C153180895 @default.
- W4285285502 hasConceptScore W4285285502C154945302 @default.
- W4285285502 hasConceptScore W4285285502C168167062 @default.