Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285290430> ?p ?o ?g. }
- W4285290430 endingPage "21417" @default.
- W4285290430 startingPage "21405" @default.
- W4285290430 abstract "In recent years, considerable progress has been made in semantic segmentation of images with favorable environments. However, the environmental perception of autonomous driving under adverse weather conditions is still very challenging. In particular, the low visibility at nighttime greatly affects driving safety. In this paper, we aim to explore image segmentation in low-light scenarios, thereby expanding the application range of autonomous vehicles. The segmentation algorithms for road scenes based on deep learning are highly dependent on the volume of images with pixel-level annotations. Considering the scarcity of labeled large-scale nighttime data, we performed synthetic data collection and data style transfer using images acquired in daytime based on the autonomous driving simulation platform and generative adversarial network, respectively. In addition, we also proposed a novel nighttime segmentation framework (SFNET-N) to effectively recognize objects in dark environments, aiming at the boundary blurring caused by low semantic contrast in low-illumination images. Specifically, the framework comprises a light enhancement network which introduces semantic information for the first time and a segmentation network with strong feature extraction capability. Extensive experiments with Dark Zurich-test and Nighttime Driving-test datasets show the effectiveness of our method compared with existing state-of-the art approaches, with 56.9% and 57.4% mIoU (mean of category-wise intersection-over-union) respectively. Finally, we also performed real-vehicle verification of the proposed models in road scenes of Zhenjiang city with poor lighting. The datasets are available at <uri xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>https://github.com/pupu-chenyanyan/semantic-segmentation-on-nightime</uri> ." @default.
- W4285290430 created "2022-07-14" @default.
- W4285290430 creator A5006361245 @default.
- W4285290430 creator A5028956096 @default.
- W4285290430 creator A5044304561 @default.
- W4285290430 creator A5047388777 @default.
- W4285290430 creator A5050309072 @default.
- W4285290430 creator A5057276700 @default.
- W4285290430 creator A5084617823 @default.
- W4285290430 date "2022-11-01" @default.
- W4285290430 modified "2023-10-09" @default.
- W4285290430 title "SFNet-N: An Improved SFNet Algorithm for Semantic Segmentation of Low-Light Autonomous Driving Road Scenes" @default.
- W4285290430 cites W1903029394 @default.
- W4285290430 cites W2103559027 @default.
- W4285290430 cites W2108598243 @default.
- W4285290430 cites W2340897893 @default.
- W4285290430 cites W2412782625 @default.
- W4285290430 cites W2560023338 @default.
- W4285290430 cites W2565639579 @default.
- W4285290430 cites W2601564443 @default.
- W4285290430 cites W2752782242 @default.
- W4285290430 cites W2884436604 @default.
- W4285290430 cites W2952735550 @default.
- W4285290430 cites W2955058313 @default.
- W4285290430 cites W2963091558 @default.
- W4285290430 cites W2963107255 @default.
- W4285290430 cites W2963881378 @default.
- W4285290430 cites W2970048031 @default.
- W4285290430 cites W2974687854 @default.
- W4285290430 cites W2978122847 @default.
- W4285290430 cites W2981689412 @default.
- W4285290430 cites W2999921958 @default.
- W4285290430 cites W3000172657 @default.
- W4285290430 cites W3007868236 @default.
- W4285290430 cites W3014641072 @default.
- W4285290430 cites W3035564946 @default.
- W4285290430 cites W3035731588 @default.
- W4285290430 cites W3102830438 @default.
- W4285290430 cites W3109301572 @default.
- W4285290430 cites W3110440461 @default.
- W4285290430 cites W3114677757 @default.
- W4285290430 cites W3135934332 @default.
- W4285290430 cites W3165745140 @default.
- W4285290430 cites W3170841864 @default.
- W4285290430 cites W3176820334 @default.
- W4285290430 cites W3207649350 @default.
- W4285290430 cites W3210097264 @default.
- W4285290430 cites W3210218433 @default.
- W4285290430 cites W3217258974 @default.
- W4285290430 cites W4226246587 @default.
- W4285290430 cites W4242059867 @default.
- W4285290430 doi "https://doi.org/10.1109/tits.2022.3177615" @default.
- W4285290430 hasPublicationYear "2022" @default.
- W4285290430 type Work @default.
- W4285290430 citedByCount "52" @default.
- W4285290430 countsByYear W42852904302022 @default.
- W4285290430 countsByYear W42852904302023 @default.
- W4285290430 crossrefType "journal-article" @default.
- W4285290430 hasAuthorship W4285290430A5006361245 @default.
- W4285290430 hasAuthorship W4285290430A5028956096 @default.
- W4285290430 hasAuthorship W4285290430A5044304561 @default.
- W4285290430 hasAuthorship W4285290430A5047388777 @default.
- W4285290430 hasAuthorship W4285290430A5050309072 @default.
- W4285290430 hasAuthorship W4285290430A5057276700 @default.
- W4285290430 hasAuthorship W4285290430A5084617823 @default.
- W4285290430 hasConcept C108583219 @default.
- W4285290430 hasConcept C123403432 @default.
- W4285290430 hasConcept C124504099 @default.
- W4285290430 hasConcept C153294291 @default.
- W4285290430 hasConcept C154945302 @default.
- W4285290430 hasConcept C205649164 @default.
- W4285290430 hasConcept C31972630 @default.
- W4285290430 hasConcept C41008148 @default.
- W4285290430 hasConcept C52622490 @default.
- W4285290430 hasConcept C58640448 @default.
- W4285290430 hasConcept C64543145 @default.
- W4285290430 hasConcept C87833898 @default.
- W4285290430 hasConcept C89600930 @default.
- W4285290430 hasConceptScore W4285290430C108583219 @default.
- W4285290430 hasConceptScore W4285290430C123403432 @default.
- W4285290430 hasConceptScore W4285290430C124504099 @default.
- W4285290430 hasConceptScore W4285290430C153294291 @default.
- W4285290430 hasConceptScore W4285290430C154945302 @default.
- W4285290430 hasConceptScore W4285290430C205649164 @default.
- W4285290430 hasConceptScore W4285290430C31972630 @default.
- W4285290430 hasConceptScore W4285290430C41008148 @default.
- W4285290430 hasConceptScore W4285290430C52622490 @default.
- W4285290430 hasConceptScore W4285290430C58640448 @default.
- W4285290430 hasConceptScore W4285290430C64543145 @default.
- W4285290430 hasConceptScore W4285290430C87833898 @default.
- W4285290430 hasConceptScore W4285290430C89600930 @default.
- W4285290430 hasIssue "11" @default.
- W4285290430 hasLocation W42852904301 @default.
- W4285290430 hasOpenAccess W4285290430 @default.
- W4285290430 hasPrimaryLocation W42852904301 @default.
- W4285290430 hasRelatedWork W1507266234 @default.
- W4285290430 hasRelatedWork W1669643531 @default.
- W4285290430 hasRelatedWork W2110230079 @default.