Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285291487> ?p ?o ?g. }
- W4285291487 endingPage "2673" @default.
- W4285291487 startingPage "2662" @default.
- W4285291487 abstract "Residential energy consumption continues to climb steadily, requiring intelligent energy management strategies to reduce power system pressures and residential electricity bills. However, it is challenging to design such strategies due to the random nature of electricity pricing, appliance demand, and user behavior. This article presents a novel reward shaping (RS)-based actor–critic deep reinforcement learning (ACDRL) algorithm to manage the residential energy consumption profile with limited information about the uncertain factors. Specifically, the interaction between the energy management center and various residential loads is modeled as a Markov decision process that provides a fundamental mathematical framework to represent the decision-making in situations where outcomes are partially random and partially influenced by the decision-maker control signals, in which the key elements containing the agent, environment, state, action, and reward are carefully designed, and the electricity price is considered as a stochastic variable. An RS-ACDRL algorithm is then developed, incorporating both the actor and critic network and an RS mechanism, to learn the optimal energy consumption schedules. Several case studies involving real-world data are conducted to evaluate the performance of the proposed algorithm. Numerical results demonstrate that the proposed algorithm outperforms state-of-the-art RL methods in terms of learning speed, solution optimality, and cost reduction." @default.
- W4285291487 created "2022-07-14" @default.
- W4285291487 creator A5018312985 @default.
- W4285291487 creator A5033671118 @default.
- W4285291487 creator A5049269026 @default.
- W4285291487 creator A5062560787 @default.
- W4285291487 creator A5066043485 @default.
- W4285291487 creator A5087579932 @default.
- W4285291487 date "2023-03-01" @default.
- W4285291487 modified "2023-10-17" @default.
- W4285291487 title "Reward Shaping-Based Actor–Critic Deep Reinforcement Learning for Residential Energy Management" @default.
- W4285291487 cites W2024998154 @default.
- W4285291487 cites W2059049926 @default.
- W4285291487 cites W2277948250 @default.
- W4285291487 cites W2615310036 @default.
- W4285291487 cites W2780336025 @default.
- W4285291487 cites W2788455270 @default.
- W4285291487 cites W2795276745 @default.
- W4285291487 cites W2806493089 @default.
- W4285291487 cites W2885580746 @default.
- W4285291487 cites W2904635416 @default.
- W4285291487 cites W2926295867 @default.
- W4285291487 cites W2963317745 @default.
- W4285291487 cites W3000626617 @default.
- W4285291487 cites W3005355833 @default.
- W4285291487 cites W3006765757 @default.
- W4285291487 cites W3007687131 @default.
- W4285291487 cites W3010036076 @default.
- W4285291487 cites W3015872947 @default.
- W4285291487 cites W3023506947 @default.
- W4285291487 cites W3031018183 @default.
- W4285291487 cites W3037631072 @default.
- W4285291487 cites W3038624044 @default.
- W4285291487 cites W3040994746 @default.
- W4285291487 cites W3088616480 @default.
- W4285291487 cites W3097281440 @default.
- W4285291487 cites W3106066138 @default.
- W4285291487 cites W3167696941 @default.
- W4285291487 cites W3170196437 @default.
- W4285291487 cites W3194824107 @default.
- W4285291487 cites W3202758697 @default.
- W4285291487 cites W3207258242 @default.
- W4285291487 doi "https://doi.org/10.1109/tii.2022.3183802" @default.
- W4285291487 hasPublicationYear "2023" @default.
- W4285291487 type Work @default.
- W4285291487 citedByCount "7" @default.
- W4285291487 countsByYear W42852914872022 @default.
- W4285291487 countsByYear W42852914872023 @default.
- W4285291487 crossrefType "journal-article" @default.
- W4285291487 hasAuthorship W4285291487A5018312985 @default.
- W4285291487 hasAuthorship W4285291487A5033671118 @default.
- W4285291487 hasAuthorship W4285291487A5049269026 @default.
- W4285291487 hasAuthorship W4285291487A5062560787 @default.
- W4285291487 hasAuthorship W4285291487A5066043485 @default.
- W4285291487 hasAuthorship W4285291487A5087579932 @default.
- W4285291487 hasConcept C105795698 @default.
- W4285291487 hasConcept C106189395 @default.
- W4285291487 hasConcept C119599485 @default.
- W4285291487 hasConcept C126255220 @default.
- W4285291487 hasConcept C127413603 @default.
- W4285291487 hasConcept C146733006 @default.
- W4285291487 hasConcept C154945302 @default.
- W4285291487 hasConcept C159886148 @default.
- W4285291487 hasConcept C186370098 @default.
- W4285291487 hasConcept C188116033 @default.
- W4285291487 hasConcept C206658404 @default.
- W4285291487 hasConcept C2779280359 @default.
- W4285291487 hasConcept C2779438525 @default.
- W4285291487 hasConcept C2780165032 @default.
- W4285291487 hasConcept C33923547 @default.
- W4285291487 hasConcept C41008148 @default.
- W4285291487 hasConcept C42475967 @default.
- W4285291487 hasConcept C7817414 @default.
- W4285291487 hasConcept C97541855 @default.
- W4285291487 hasConceptScore W4285291487C105795698 @default.
- W4285291487 hasConceptScore W4285291487C106189395 @default.
- W4285291487 hasConceptScore W4285291487C119599485 @default.
- W4285291487 hasConceptScore W4285291487C126255220 @default.
- W4285291487 hasConceptScore W4285291487C127413603 @default.
- W4285291487 hasConceptScore W4285291487C146733006 @default.
- W4285291487 hasConceptScore W4285291487C154945302 @default.
- W4285291487 hasConceptScore W4285291487C159886148 @default.
- W4285291487 hasConceptScore W4285291487C186370098 @default.
- W4285291487 hasConceptScore W4285291487C188116033 @default.
- W4285291487 hasConceptScore W4285291487C206658404 @default.
- W4285291487 hasConceptScore W4285291487C2779280359 @default.
- W4285291487 hasConceptScore W4285291487C2779438525 @default.
- W4285291487 hasConceptScore W4285291487C2780165032 @default.
- W4285291487 hasConceptScore W4285291487C33923547 @default.
- W4285291487 hasConceptScore W4285291487C41008148 @default.
- W4285291487 hasConceptScore W4285291487C42475967 @default.
- W4285291487 hasConceptScore W4285291487C7817414 @default.
- W4285291487 hasConceptScore W4285291487C97541855 @default.
- W4285291487 hasFunder F4320321001 @default.
- W4285291487 hasFunder F4320327677 @default.
- W4285291487 hasFunder F4320335787 @default.
- W4285291487 hasIssue "3" @default.
- W4285291487 hasLocation W42852914871 @default.