Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285291707> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W4285291707 endingPage "2022003" @default.
- W4285291707 startingPage "2022003" @default.
- W4285291707 abstract "Nowadays, large numbers of smart sensors ( e.g. , road-side cameras) which communicate with nearby base stations could launch distributed denial of services (DDoS) attack storms in intelligent transportation systems. DDoS attacks disable the services provided by base stations. Thus in this paper, considering the uneven communication traffic flows and privacy preserving, we give a hidden Markov model-based prediction model by utilizing the multi-step characteristic of DDoS with a federated learning framework to predict whether DDoS attacks will happen on base stations in the future. However, in the federated learning, we need to consider the problem of poisoning attacks due to malicious participants. The poisoning attacks will lead to the intelligent transportation systems paralysis without security protection. Traditional poisoning attacks mainly apply to the classification model with labeled data. In this paper, we propose a reinforcement learning-based poisoning method specifically for poisoning the prediction model with unlabeled data. Besides, previous related defense strategies rely on validation datasets with labeled data in the server. However, it is unrealistic since the local training datasets are not uploaded to the server due to privacy preserving, and our datasets are also unlabeled. Furthermore, we give a validation dataset-free defense strategy based on Dempster–Shafer (D–S) evidence theory avoiding anomaly aggregation to obtain a robust global model for precise DDoS prediction. In our experiments, we simulate 3000 points in combination with DARPA2000 dataset to carry out evaluations. The results indicate that our poisoning method can successfully poison the global prediction model with unlabeled data in a short time. Meanwhile, we compare our proposed defense algorithm with three popularly used defense algorithms. The results show that our defense method has a high accuracy rate of excluding poisoners and can obtain a high attack prediction probability." @default.
- W4285291707 created "2022-07-14" @default.
- W4285291707 creator A5020390211 @default.
- W4285291707 creator A5020561528 @default.
- W4285291707 creator A5066099338 @default.
- W4285291707 date "2022-01-01" @default.
- W4285291707 modified "2023-10-05" @default.
- W4285291707 title "Efficient poisoning attacks and defenses for unlabeled data in DDoS prediction of intelligent transportation systems" @default.
- W4285291707 cites W1980695269 @default.
- W4285291707 cites W2075863131 @default.
- W4285291707 cites W2153233077 @default.
- W4285291707 cites W2614254310 @default.
- W4285291707 cites W2746553466 @default.
- W4285291707 cites W2755588949 @default.
- W4285291707 cites W2789511664 @default.
- W4285291707 cites W2967136126 @default.
- W4285291707 cites W2980257194 @default.
- W4285291707 cites W2982302101 @default.
- W4285291707 cites W3006403513 @default.
- W4285291707 cites W3010216764 @default.
- W4285291707 cites W3015636663 @default.
- W4285291707 cites W3030565336 @default.
- W4285291707 cites W3084847664 @default.
- W4285291707 cites W3096718731 @default.
- W4285291707 cites W3105750153 @default.
- W4285291707 cites W3109695251 @default.
- W4285291707 cites W3113308842 @default.
- W4285291707 cites W4205488455 @default.
- W4285291707 doi "https://doi.org/10.1051/sands/2022003" @default.
- W4285291707 hasPublicationYear "2022" @default.
- W4285291707 type Work @default.
- W4285291707 citedByCount "0" @default.
- W4285291707 crossrefType "journal-article" @default.
- W4285291707 hasAuthorship W4285291707A5020390211 @default.
- W4285291707 hasAuthorship W4285291707A5020561528 @default.
- W4285291707 hasAuthorship W4285291707A5066099338 @default.
- W4285291707 hasBestOaLocation W42852917071 @default.
- W4285291707 hasConcept C110875604 @default.
- W4285291707 hasConcept C111919701 @default.
- W4285291707 hasConcept C119857082 @default.
- W4285291707 hasConcept C120865594 @default.
- W4285291707 hasConcept C124101348 @default.
- W4285291707 hasConcept C127413603 @default.
- W4285291707 hasConcept C136764020 @default.
- W4285291707 hasConcept C147176958 @default.
- W4285291707 hasConcept C154945302 @default.
- W4285291707 hasConcept C38652104 @default.
- W4285291707 hasConcept C38822068 @default.
- W4285291707 hasConcept C41008148 @default.
- W4285291707 hasConcept C47796450 @default.
- W4285291707 hasConcept C71901391 @default.
- W4285291707 hasConcept C739882 @default.
- W4285291707 hasConceptScore W4285291707C110875604 @default.
- W4285291707 hasConceptScore W4285291707C111919701 @default.
- W4285291707 hasConceptScore W4285291707C119857082 @default.
- W4285291707 hasConceptScore W4285291707C120865594 @default.
- W4285291707 hasConceptScore W4285291707C124101348 @default.
- W4285291707 hasConceptScore W4285291707C127413603 @default.
- W4285291707 hasConceptScore W4285291707C136764020 @default.
- W4285291707 hasConceptScore W4285291707C147176958 @default.
- W4285291707 hasConceptScore W4285291707C154945302 @default.
- W4285291707 hasConceptScore W4285291707C38652104 @default.
- W4285291707 hasConceptScore W4285291707C38822068 @default.
- W4285291707 hasConceptScore W4285291707C41008148 @default.
- W4285291707 hasConceptScore W4285291707C47796450 @default.
- W4285291707 hasConceptScore W4285291707C71901391 @default.
- W4285291707 hasConceptScore W4285291707C739882 @default.
- W4285291707 hasLocation W42852917071 @default.
- W4285291707 hasLocation W42852917072 @default.
- W4285291707 hasOpenAccess W4285291707 @default.
- W4285291707 hasPrimaryLocation W42852917071 @default.
- W4285291707 hasRelatedWork W1521850300 @default.
- W4285291707 hasRelatedWork W2105462833 @default.
- W4285291707 hasRelatedWork W2187421104 @default.
- W4285291707 hasRelatedWork W2350327328 @default.
- W4285291707 hasRelatedWork W2360429410 @default.
- W4285291707 hasRelatedWork W2372606455 @default.
- W4285291707 hasRelatedWork W2376172429 @default.
- W4285291707 hasRelatedWork W3142394876 @default.
- W4285291707 hasRelatedWork W4377970398 @default.
- W4285291707 hasRelatedWork W2189314507 @default.
- W4285291707 hasVolume "1" @default.
- W4285291707 isParatext "false" @default.
- W4285291707 isRetracted "false" @default.
- W4285291707 workType "article" @default.