Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285293238> ?p ?o ?g. }
- W4285293238 endingPage "65610" @default.
- W4285293238 startingPage "65598" @default.
- W4285293238 abstract "Accurate segmentation and detection (instance segmentation) of white blood cells (WBCs) from whole slide images remains a challenging task, as the WBCs vary widely in shapes, sizes, and colors caused by different cell subtypes and various staining techniques. In this paper, we propose a novel framework for end-to-end segmentation and detection of WBCs that are on multiple scales and stained by different techniques. We name the framework the multi-scale and multi-staining WBC instance segmentation network (MSS-WISN). The MSS-WISN consists of two parts: 1) a feature extraction network for strengthening the feature expression and minimizing the impact of different staining techniques, and 2) a feature fusion network for highlighting salient features and thereby eliminating the effect of scale variations. To verify the effectiveness of the MSS-WISN, we build a new dataset containing 302 Magenta stained images (collected by Tianjin Medical University) and 242 Wright stained images (from a public dataset). Experiments show that the proposed framework outperforms other state-of-the-art methods in terms of WBC detection and WBC segmentation." @default.
- W4285293238 created "2022-07-14" @default.
- W4285293238 creator A5007910454 @default.
- W4285293238 creator A5026587698 @default.
- W4285293238 creator A5030168652 @default.
- W4285293238 creator A5046990707 @default.
- W4285293238 creator A5070105853 @default.
- W4285293238 creator A5080102032 @default.
- W4285293238 creator A5082599714 @default.
- W4285293238 date "2022-01-01" @default.
- W4285293238 modified "2023-10-14" @default.
- W4285293238 title "MSS-WISN: Multiscale Multistaining WBCs Instance Segmentation Network" @default.
- W4285293238 cites W1980276039 @default.
- W4285293238 cites W1980448751 @default.
- W4285293238 cites W2003927787 @default.
- W4285293238 cites W2012442592 @default.
- W4285293238 cites W2104466802 @default.
- W4285293238 cites W2119391377 @default.
- W4285293238 cites W2151538727 @default.
- W4285293238 cites W2155813740 @default.
- W4285293238 cites W2160094774 @default.
- W4285293238 cites W2169122219 @default.
- W4285293238 cites W2328723716 @default.
- W4285293238 cites W2344654247 @default.
- W4285293238 cites W2503433586 @default.
- W4285293238 cites W2549139847 @default.
- W4285293238 cites W2551596518 @default.
- W4285293238 cites W2555182955 @default.
- W4285293238 cites W2617163510 @default.
- W4285293238 cites W2752782242 @default.
- W4285293238 cites W2755465423 @default.
- W4285293238 cites W2893381779 @default.
- W4285293238 cites W2920326761 @default.
- W4285293238 cites W2953681063 @default.
- W4285293238 cites W2963150697 @default.
- W4285293238 cites W2963299996 @default.
- W4285293238 cites W2963857746 @default.
- W4285293238 cites W2964241181 @default.
- W4285293238 cites W2980046504 @default.
- W4285293238 cites W2980633381 @default.
- W4285293238 cites W2984155152 @default.
- W4285293238 cites W2990797921 @default.
- W4285293238 cites W3000364324 @default.
- W4285293238 cites W3013589844 @default.
- W4285293238 cites W3033728548 @default.
- W4285293238 cites W3035524459 @default.
- W4285293238 cites W3037839692 @default.
- W4285293238 cites W3043056841 @default.
- W4285293238 cites W3089921054 @default.
- W4285293238 cites W3095187889 @default.
- W4285293238 cites W4210914445 @default.
- W4285293238 cites W4214839262 @default.
- W4285293238 cites W639708223 @default.
- W4285293238 doi "https://doi.org/10.1109/access.2022.3182800" @default.
- W4285293238 hasPublicationYear "2022" @default.
- W4285293238 type Work @default.
- W4285293238 citedByCount "2" @default.
- W4285293238 countsByYear W42852932382023 @default.
- W4285293238 crossrefType "journal-article" @default.
- W4285293238 hasAuthorship W4285293238A5007910454 @default.
- W4285293238 hasAuthorship W4285293238A5026587698 @default.
- W4285293238 hasAuthorship W4285293238A5030168652 @default.
- W4285293238 hasAuthorship W4285293238A5046990707 @default.
- W4285293238 hasAuthorship W4285293238A5070105853 @default.
- W4285293238 hasAuthorship W4285293238A5080102032 @default.
- W4285293238 hasAuthorship W4285293238A5082599714 @default.
- W4285293238 hasBestOaLocation W42852932381 @default.
- W4285293238 hasConcept C124504099 @default.
- W4285293238 hasConcept C138885662 @default.
- W4285293238 hasConcept C153180895 @default.
- W4285293238 hasConcept C154945302 @default.
- W4285293238 hasConcept C2776401178 @default.
- W4285293238 hasConcept C31972630 @default.
- W4285293238 hasConcept C41008148 @default.
- W4285293238 hasConcept C41895202 @default.
- W4285293238 hasConcept C52622490 @default.
- W4285293238 hasConcept C65885262 @default.
- W4285293238 hasConcept C89600930 @default.
- W4285293238 hasConceptScore W4285293238C124504099 @default.
- W4285293238 hasConceptScore W4285293238C138885662 @default.
- W4285293238 hasConceptScore W4285293238C153180895 @default.
- W4285293238 hasConceptScore W4285293238C154945302 @default.
- W4285293238 hasConceptScore W4285293238C2776401178 @default.
- W4285293238 hasConceptScore W4285293238C31972630 @default.
- W4285293238 hasConceptScore W4285293238C41008148 @default.
- W4285293238 hasConceptScore W4285293238C41895202 @default.
- W4285293238 hasConceptScore W4285293238C52622490 @default.
- W4285293238 hasConceptScore W4285293238C65885262 @default.
- W4285293238 hasConceptScore W4285293238C89600930 @default.
- W4285293238 hasFunder F4320321001 @default.
- W4285293238 hasLocation W42852932381 @default.
- W4285293238 hasOpenAccess W4285293238 @default.
- W4285293238 hasPrimaryLocation W42852932381 @default.
- W4285293238 hasRelatedWork W1669643531 @default.
- W4285293238 hasRelatedWork W1982826852 @default.
- W4285293238 hasRelatedWork W2005437358 @default.
- W4285293238 hasRelatedWork W2110230079 @default.
- W4285293238 hasRelatedWork W2384989255 @default.