Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285294087> ?p ?o ?g. }
- W4285294087 endingPage "972" @default.
- W4285294087 startingPage "958" @default.
- W4285294087 abstract "The limited transmitter-to-receiver stop-band isolation of the duplexers in long term evolution (LTE) and 5G/NR frequency division duplex transceivers induces leakage signals from the transmitter(s) (Tx) into the receiver(s) (Rx). These leakage signals are the root cause of a multitude of self-interference (SI) problems in the receiver path(s) diminishing a receiver’s sensitivity. Traditionally, these effects are counteracted by the use of various different SI cancellation (SIC) architectures which typically solely target one specific problem. In this paper, we propose two novel neural networks based architectures that can handle a variety of different SI effects without the need for a different architecture for each effect. We additionally show the suitability of the proposed architecture on SI effects occurring in in-band full duplex transceivers. Further, we introduce two novel low-cost training algorithms to enable online adaptation (as opposed to offline training currently proposed in literature). The combination of these two concepts is shown to not only beat existing algorithms in their cancellation performance, but also to provide sufficiently low computational complexity allowing on-chip implementations." @default.
- W4285294087 created "2022-07-14" @default.
- W4285294087 creator A5011826671 @default.
- W4285294087 creator A5026915032 @default.
- W4285294087 creator A5031935371 @default.
- W4285294087 creator A5049116697 @default.
- W4285294087 creator A5072090079 @default.
- W4285294087 creator A5088506905 @default.
- W4285294087 date "2022-01-01" @default.
- W4285294087 modified "2023-10-14" @default.
- W4285294087 title "SICNet—Low Complexity Sample Adaptive Neural Network-Based Self-Interference Cancellation in LTE-A/5G Mobile Transceivers" @default.
- W4285294087 cites W1638064899 @default.
- W4285294087 cites W1994570779 @default.
- W4285294087 cites W2064675550 @default.
- W4285294087 cites W2069816479 @default.
- W4285294087 cites W2108379813 @default.
- W4285294087 cites W2151747513 @default.
- W4285294087 cites W2164104072 @default.
- W4285294087 cites W2172231696 @default.
- W4285294087 cites W2474441753 @default.
- W4285294087 cites W2519950395 @default.
- W4285294087 cites W2585380722 @default.
- W4285294087 cites W2768957829 @default.
- W4285294087 cites W2786131124 @default.
- W4285294087 cites W2791769434 @default.
- W4285294087 cites W2793714280 @default.
- W4285294087 cites W2798781848 @default.
- W4285294087 cites W2902465798 @default.
- W4285294087 cites W2919929099 @default.
- W4285294087 cites W2963232127 @default.
- W4285294087 cites W2963514534 @default.
- W4285294087 cites W2964216532 @default.
- W4285294087 cites W2971231369 @default.
- W4285294087 cites W2987846186 @default.
- W4285294087 cites W3007808179 @default.
- W4285294087 cites W3013452667 @default.
- W4285294087 cites W3013627025 @default.
- W4285294087 cites W3019166713 @default.
- W4285294087 cites W3021155900 @default.
- W4285294087 cites W3038852474 @default.
- W4285294087 cites W3044251824 @default.
- W4285294087 cites W3085444268 @default.
- W4285294087 cites W3090494233 @default.
- W4285294087 cites W3102496727 @default.
- W4285294087 cites W3103033611 @default.
- W4285294087 cites W3154164959 @default.
- W4285294087 cites W3158410265 @default.
- W4285294087 cites W3159238029 @default.
- W4285294087 cites W3161726954 @default.
- W4285294087 cites W3170104613 @default.
- W4285294087 cites W3172771767 @default.
- W4285294087 cites W4214842920 @default.
- W4285294087 cites W4214882008 @default.
- W4285294087 doi "https://doi.org/10.1109/ojcoms.2022.3181685" @default.
- W4285294087 hasPublicationYear "2022" @default.
- W4285294087 type Work @default.
- W4285294087 citedByCount "0" @default.
- W4285294087 crossrefType "journal-article" @default.
- W4285294087 hasAuthorship W4285294087A5011826671 @default.
- W4285294087 hasAuthorship W4285294087A5026915032 @default.
- W4285294087 hasAuthorship W4285294087A5031935371 @default.
- W4285294087 hasAuthorship W4285294087A5049116697 @default.
- W4285294087 hasAuthorship W4285294087A5072090079 @default.
- W4285294087 hasAuthorship W4285294087A5088506905 @default.
- W4285294087 hasBestOaLocation W42852940871 @default.
- W4285294087 hasConcept C127162648 @default.
- W4285294087 hasConcept C127413603 @default.
- W4285294087 hasConcept C24326235 @default.
- W4285294087 hasConcept C31258907 @default.
- W4285294087 hasConcept C41008148 @default.
- W4285294087 hasConcept C47798520 @default.
- W4285294087 hasConcept C555944384 @default.
- W4285294087 hasConcept C57273362 @default.
- W4285294087 hasConcept C76155785 @default.
- W4285294087 hasConcept C7720470 @default.
- W4285294087 hasConcept C83204339 @default.
- W4285294087 hasConceptScore W4285294087C127162648 @default.
- W4285294087 hasConceptScore W4285294087C127413603 @default.
- W4285294087 hasConceptScore W4285294087C24326235 @default.
- W4285294087 hasConceptScore W4285294087C31258907 @default.
- W4285294087 hasConceptScore W4285294087C41008148 @default.
- W4285294087 hasConceptScore W4285294087C47798520 @default.
- W4285294087 hasConceptScore W4285294087C555944384 @default.
- W4285294087 hasConceptScore W4285294087C57273362 @default.
- W4285294087 hasConceptScore W4285294087C76155785 @default.
- W4285294087 hasConceptScore W4285294087C7720470 @default.
- W4285294087 hasConceptScore W4285294087C83204339 @default.
- W4285294087 hasFunder F4320311813 @default.
- W4285294087 hasFunder F4320323591 @default.
- W4285294087 hasFunder F4320327593 @default.
- W4285294087 hasLocation W42852940871 @default.
- W4285294087 hasLocation W42852940872 @default.
- W4285294087 hasLocation W42852940873 @default.
- W4285294087 hasOpenAccess W4285294087 @default.
- W4285294087 hasPrimaryLocation W42852940871 @default.
- W4285294087 hasRelatedWork W1611913090 @default.
- W4285294087 hasRelatedWork W1863465156 @default.
- W4285294087 hasRelatedWork W1986666130 @default.