Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285294927> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W4285294927 endingPage "32" @default.
- W4285294927 startingPage "17" @default.
- W4285294927 abstract "It is essential to recognize breast cancer disease as right on time as could be expected. As we all know breast malignancy is the most well-known disease in ladies around the world, with almost 1.68 million new cases analysed in 2012, addressing around 24.8% of all tumours in ladies. Also, a developing global acknowledgement of Western style and practices has been related with an expansion in overall malignancy rates. In 2020, an expected 276,500 new instances of obtrusive breast disease are analysed in ladies in the USA just as 48,525 new instances of nonintrusive (in situ) breast malignant growth. This cancer credibly investigated by various tests, together with mammogram, radiology scan, biopsy, and MRI. A mammogram is a X-ray test of breast. Here, the method used is mammography. Mammography is the path towards using low-energy X radiates (generally speaking around 30 kVp) to take a gander at the human breast for investigation and screening. The deep convolutional neural organization (DCNN) is utilized for include extraction. Further patch extraction and pixel-based extraction are used to detect the breast cancer at the early stage. In patch-level abstraction, “patch-wise” network goes about as an auto-encoder that concentrates the most notable highlights of image patches”, and in “pixel-level” abstraction, the presence of cancer is detecting by using pixel values as this is a sort of more elevated-level morphological idea that can be applied to pictures which is particularly valuable in pictures that are diagrams, maps, and so forth. Diminishing with the end goal of text acknowledgement shows up less fitting." @default.
- W4285294927 created "2022-07-14" @default.
- W4285294927 creator A5016907726 @default.
- W4285294927 creator A5044933971 @default.
- W4285294927 creator A5082493758 @default.
- W4285294927 creator A5084922366 @default.
- W4285294927 date "2022-01-01" @default.
- W4285294927 modified "2023-10-11" @default.
- W4285294927 title "Improvement in Breast Cancer Detection Using Deep Learning" @default.
- W4285294927 cites W2588570836 @default.
- W4285294927 cites W2731422065 @default.
- W4285294927 cites W2736374171 @default.
- W4285294927 cites W2761969486 @default.
- W4285294927 cites W2889326414 @default.
- W4285294927 cites W2908709606 @default.
- W4285294927 cites W2913774342 @default.
- W4285294927 cites W2918598741 @default.
- W4285294927 cites W2949400777 @default.
- W4285294927 cites W2950616610 @default.
- W4285294927 cites W2964189045 @default.
- W4285294927 cites W2964348594 @default.
- W4285294927 cites W2980030301 @default.
- W4285294927 cites W3106307315 @default.
- W4285294927 cites W4288079701 @default.
- W4285294927 cites W4299298161 @default.
- W4285294927 doi "https://doi.org/10.1007/978-981-19-0825-5_3" @default.
- W4285294927 hasPublicationYear "2022" @default.
- W4285294927 type Work @default.
- W4285294927 citedByCount "1" @default.
- W4285294927 countsByYear W42852949272022 @default.
- W4285294927 crossrefType "book-chapter" @default.
- W4285294927 hasAuthorship W4285294927A5016907726 @default.
- W4285294927 hasAuthorship W4285294927A5044933971 @default.
- W4285294927 hasAuthorship W4285294927A5082493758 @default.
- W4285294927 hasAuthorship W4285294927A5084922366 @default.
- W4285294927 hasConcept C121608353 @default.
- W4285294927 hasConcept C126322002 @default.
- W4285294927 hasConcept C126838900 @default.
- W4285294927 hasConcept C142724271 @default.
- W4285294927 hasConcept C154945302 @default.
- W4285294927 hasConcept C160633673 @default.
- W4285294927 hasConcept C2779399171 @default.
- W4285294927 hasConcept C2780472235 @default.
- W4285294927 hasConcept C41008148 @default.
- W4285294927 hasConcept C530470458 @default.
- W4285294927 hasConcept C71924100 @default.
- W4285294927 hasConceptScore W4285294927C121608353 @default.
- W4285294927 hasConceptScore W4285294927C126322002 @default.
- W4285294927 hasConceptScore W4285294927C126838900 @default.
- W4285294927 hasConceptScore W4285294927C142724271 @default.
- W4285294927 hasConceptScore W4285294927C154945302 @default.
- W4285294927 hasConceptScore W4285294927C160633673 @default.
- W4285294927 hasConceptScore W4285294927C2779399171 @default.
- W4285294927 hasConceptScore W4285294927C2780472235 @default.
- W4285294927 hasConceptScore W4285294927C41008148 @default.
- W4285294927 hasConceptScore W4285294927C530470458 @default.
- W4285294927 hasConceptScore W4285294927C71924100 @default.
- W4285294927 hasLocation W42852949271 @default.
- W4285294927 hasOpenAccess W4285294927 @default.
- W4285294927 hasPrimaryLocation W42852949271 @default.
- W4285294927 hasRelatedWork W2040758380 @default.
- W4285294927 hasRelatedWork W2062501297 @default.
- W4285294927 hasRelatedWork W2068617738 @default.
- W4285294927 hasRelatedWork W2436129894 @default.
- W4285294927 hasRelatedWork W2899084033 @default.
- W4285294927 hasRelatedWork W2902148150 @default.
- W4285294927 hasRelatedWork W2945069269 @default.
- W4285294927 hasRelatedWork W3118638086 @default.
- W4285294927 hasRelatedWork W3204371950 @default.
- W4285294927 hasRelatedWork W41813562 @default.
- W4285294927 isParatext "false" @default.
- W4285294927 isRetracted "false" @default.
- W4285294927 workType "book-chapter" @default.