Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285296937> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W4285296937 endingPage "1068" @default.
- W4285296937 startingPage "1057" @default.
- W4285296937 abstract "In the recent days, the segmentation of Liver Tumor (LT) has been demanding and challenging. The process of segmenting the liver and accurately spotting the tumor is demanding due to the diversity of shape, texture, and intensity of the liver image. The intensity similarities of the neighboring organs of the liver create difficulties during liver segmentation. The manual segmentation does not provide an accurate segmentation because the results provided by different medical experts can vary. Also, this manual technique requires a large number of image slices and time for segmentation. To solve these issues, the Fully Automatic Segmentation (FAS) technique is proposed. In this proposed Multi-Angle Texture Active Contour Model (MAT-ACM) method, the input Computed Tomography (CT) image is preprocessed by Contrast Enhancement (CE) with Non-Linear Mapping Technique (NLMT), in which the liver is differentiated from its neighbouring soft tissues with related strength. Then, the filtered images are given as the input to Adaptive Edge Modeling (AEM) with Canny Edge Detection (CED) technique, which segments the Liver Region (LR) from the given CT images. An AEM with a CED model is implemented, which increases the convergence speed of the iterative process for decreasing the Volumetric Overlap Error (VOE) is 6.92% rates when compared with the traditional Segmentation Techniques (ST). Finally, the Liver Tumor Segmentation (LTS) is developed by applying the MAT-ACM, which accurately segments the LR from the segmented LRs. The evaluation of the proposed method is compared with the existing LTS methods using various performance measures to prove the superiority of the proposed MAT-ACM method." @default.
- W4285296937 created "2022-07-14" @default.
- W4285296937 creator A5006152284 @default.
- W4285296937 creator A5013760675 @default.
- W4285296937 creator A5025260924 @default.
- W4285296937 creator A5059202719 @default.
- W4285296937 creator A5082920406 @default.
- W4285296937 date "2022-01-01" @default.
- W4285296937 modified "2023-10-14" @default.
- W4285296937 title "Automatic Liver Tumor Segmentation in CT Modalities Using MAT-ACM" @default.
- W4285296937 cites W1647860820 @default.
- W4285296937 cites W1981620530 @default.
- W4285296937 cites W1992284218 @default.
- W4285296937 cites W1996565856 @default.
- W4285296937 cites W2003258143 @default.
- W4285296937 cites W2005888349 @default.
- W4285296937 cites W2031534613 @default.
- W4285296937 cites W2047876477 @default.
- W4285296937 cites W2094944418 @default.
- W4285296937 cites W2148392699 @default.
- W4285296937 cites W2151551382 @default.
- W4285296937 cites W2153431772 @default.
- W4285296937 cites W2175951243 @default.
- W4285296937 cites W2587798541 @default.
- W4285296937 cites W2897944772 @default.
- W4285296937 doi "https://doi.org/10.32604/csse.2022.024788" @default.
- W4285296937 hasPublicationYear "2022" @default.
- W4285296937 type Work @default.
- W4285296937 citedByCount "0" @default.
- W4285296937 crossrefType "journal-article" @default.
- W4285296937 hasAuthorship W4285296937A5006152284 @default.
- W4285296937 hasAuthorship W4285296937A5013760675 @default.
- W4285296937 hasAuthorship W4285296937A5025260924 @default.
- W4285296937 hasAuthorship W4285296937A5059202719 @default.
- W4285296937 hasAuthorship W4285296937A5082920406 @default.
- W4285296937 hasBestOaLocation W42852969371 @default.
- W4285296937 hasConcept C111919701 @default.
- W4285296937 hasConcept C124504099 @default.
- W4285296937 hasConcept C153180895 @default.
- W4285296937 hasConcept C154945302 @default.
- W4285296937 hasConcept C31972630 @default.
- W4285296937 hasConcept C41008148 @default.
- W4285296937 hasConcept C89600930 @default.
- W4285296937 hasConcept C98045186 @default.
- W4285296937 hasConceptScore W4285296937C111919701 @default.
- W4285296937 hasConceptScore W4285296937C124504099 @default.
- W4285296937 hasConceptScore W4285296937C153180895 @default.
- W4285296937 hasConceptScore W4285296937C154945302 @default.
- W4285296937 hasConceptScore W4285296937C31972630 @default.
- W4285296937 hasConceptScore W4285296937C41008148 @default.
- W4285296937 hasConceptScore W4285296937C89600930 @default.
- W4285296937 hasConceptScore W4285296937C98045186 @default.
- W4285296937 hasIssue "3" @default.
- W4285296937 hasLocation W42852969371 @default.
- W4285296937 hasOpenAccess W4285296937 @default.
- W4285296937 hasPrimaryLocation W42852969371 @default.
- W4285296937 hasRelatedWork W1669643531 @default.
- W4285296937 hasRelatedWork W1982826852 @default.
- W4285296937 hasRelatedWork W2005437358 @default.
- W4285296937 hasRelatedWork W2008656436 @default.
- W4285296937 hasRelatedWork W2023558673 @default.
- W4285296937 hasRelatedWork W2110230079 @default.
- W4285296937 hasRelatedWork W2134924024 @default.
- W4285296937 hasRelatedWork W2517104666 @default.
- W4285296937 hasRelatedWork W2613186388 @default.
- W4285296937 hasRelatedWork W1967061043 @default.
- W4285296937 hasVolume "43" @default.
- W4285296937 isParatext "false" @default.
- W4285296937 isRetracted "false" @default.
- W4285296937 workType "article" @default.