Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285297632> ?p ?o ?g. }
- W4285297632 endingPage "132" @default.
- W4285297632 startingPage "113" @default.
- W4285297632 abstract "Early detection of knee osteoarthritis and poor balance can decrease falls in the elderly. Thus, automatic fall detection is an essential system for assuring the safety and health of the elderly. However, the use of the Visible Imaging System (VIS) installed in homes can affect people’s privacy. Compared to visible imaging, thermal imaging involves people’s privacy less and allows various incidents to be identified based on machine vision. A novel two-step framework through thermal imaging videos is introduced in this paper, including tracking humans and deep learning-based for recognizing the fall incidents. In the first step, the Kalman filter is employed to distinguish people’s positions. Then, the novel modified ShuffleNet is utilized to refine the obtained bounding boxes of people at risk of falling. The proposed approach is implemented using the Internet of Things (IoT) deployment. The publicly thermal fall dataset analyses reveal the superior outcomes achieved with an average of less than 7% error compared to the conventional fall detection models. Besides, the IoT platform helps to process the incidents data and more efficiently, real-time monitoring, manage energy usage, and healthcare management." @default.
- W4285297632 created "2022-07-14" @default.
- W4285297632 creator A5014860204 @default.
- W4285297632 creator A5068225668 @default.
- W4285297632 creator A5074745984 @default.
- W4285297632 date "2022-01-01" @default.
- W4285297632 modified "2023-10-17" @default.
- W4285297632 title "Intelligent Elderly People Fall Detection Based on Modified Deep Learning Deep Transfer Learning and IoT Using Thermal Imaging-Assisted Pervasive Surveillance" @default.
- W4285297632 cites W1486303545 @default.
- W4285297632 cites W1578280683 @default.
- W4285297632 cites W1975091723 @default.
- W4285297632 cites W1977324509 @default.
- W4285297632 cites W1981676766 @default.
- W4285297632 cites W1990555822 @default.
- W4285297632 cites W2021624862 @default.
- W4285297632 cites W2036068162 @default.
- W4285297632 cites W2059300385 @default.
- W4285297632 cites W2060599388 @default.
- W4285297632 cites W2070228679 @default.
- W4285297632 cites W2076068958 @default.
- W4285297632 cites W2082307583 @default.
- W4285297632 cites W2125105188 @default.
- W4285297632 cites W2138797044 @default.
- W4285297632 cites W2155326828 @default.
- W4285297632 cites W2171910033 @default.
- W4285297632 cites W2314945657 @default.
- W4285297632 cites W2414900880 @default.
- W4285297632 cites W2542375970 @default.
- W4285297632 cites W2548604049 @default.
- W4285297632 cites W2592090957 @default.
- W4285297632 cites W2604174049 @default.
- W4285297632 cites W2746870488 @default.
- W4285297632 cites W2767685167 @default.
- W4285297632 cites W2770987547 @default.
- W4285297632 cites W2779252670 @default.
- W4285297632 cites W2801475069 @default.
- W4285297632 cites W2885347446 @default.
- W4285297632 cites W2903016534 @default.
- W4285297632 cites W2903882939 @default.
- W4285297632 cites W2909645133 @default.
- W4285297632 cites W2921884976 @default.
- W4285297632 cites W2927818282 @default.
- W4285297632 cites W2955998385 @default.
- W4285297632 cites W2963125010 @default.
- W4285297632 cites W2964839244 @default.
- W4285297632 cites W2970816379 @default.
- W4285297632 cites W2971162234 @default.
- W4285297632 cites W2980814982 @default.
- W4285297632 cites W2982556687 @default.
- W4285297632 cites W2984598623 @default.
- W4285297632 cites W2990014978 @default.
- W4285297632 cites W2996492278 @default.
- W4285297632 cites W3007412063 @default.
- W4285297632 cites W3009686892 @default.
- W4285297632 cites W3033466636 @default.
- W4285297632 cites W3034455037 @default.
- W4285297632 cites W3081597052 @default.
- W4285297632 cites W3085242700 @default.
- W4285297632 cites W3087579405 @default.
- W4285297632 cites W3090486704 @default.
- W4285297632 cites W3091724031 @default.
- W4285297632 cites W3094099795 @default.
- W4285297632 cites W3101028550 @default.
- W4285297632 cites W3101865075 @default.
- W4285297632 cites W3123781458 @default.
- W4285297632 cites W3126886589 @default.
- W4285297632 cites W3134111008 @default.
- W4285297632 cites W3163741538 @default.
- W4285297632 cites W3173743304 @default.
- W4285297632 cites W3179841826 @default.
- W4285297632 cites W3182792505 @default.
- W4285297632 cites W3183267138 @default.
- W4285297632 cites W3184767295 @default.
- W4285297632 cites W4251227201 @default.
- W4285297632 doi "https://doi.org/10.1007/978-981-16-8150-9_6" @default.
- W4285297632 hasPublicationYear "2022" @default.
- W4285297632 type Work @default.
- W4285297632 citedByCount "3" @default.
- W4285297632 countsByYear W42852976322023 @default.
- W4285297632 crossrefType "book-chapter" @default.
- W4285297632 hasAuthorship W4285297632A5014860204 @default.
- W4285297632 hasAuthorship W4285297632A5068225668 @default.
- W4285297632 hasAuthorship W4285297632A5074745984 @default.
- W4285297632 hasConcept C105339364 @default.
- W4285297632 hasConcept C108583219 @default.
- W4285297632 hasConcept C111919701 @default.
- W4285297632 hasConcept C119857082 @default.
- W4285297632 hasConcept C149635348 @default.
- W4285297632 hasConcept C150594956 @default.
- W4285297632 hasConcept C150899416 @default.
- W4285297632 hasConcept C154945302 @default.
- W4285297632 hasConcept C157286648 @default.
- W4285297632 hasConcept C31972630 @default.
- W4285297632 hasConcept C38652104 @default.
- W4285297632 hasConcept C41008148 @default.
- W4285297632 hasConcept C546215728 @default.
- W4285297632 hasConcept C555944384 @default.
- W4285297632 hasConcept C63584917 @default.