Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285297837> ?p ?o ?g. }
- W4285297837 endingPage "264" @default.
- W4285297837 startingPage "252" @default.
- W4285297837 abstract "This article presents a learning-based adaptive optimal control approach for flotation processes subject to input constraints and disturbances using adaptive dynamic programming (ADP) along with double-loop iteration. First, the principle of the operational pattern is adopted to preset reagents’ addition based on the feeding condition. Then, this article leverages a deep learning model, which is composed of multiple neural layers to detect flotation indexes directly from the raw froth images. After that, the tracking error between the detected flotation indexes and the reference values can be minimized by using ADP-based double-loop iteration. Particularly, a policy-iteration (PI) method is utilized for the proposed learning-based ADP algorithm. In the inner loop, the optimal control problem is formulated as a linear quadratic regulator (LQR) problem using the low-gain feedback design method. In the outer loop, the design parameters, i.e., weighting matrices, are tuned automatically to satisfy the input constraints. Finally, the analytical results demonstrate that the proposed scheme can guarantee asymptotic tracking in the presence of actuator saturation and disturbances." @default.
- W4285297837 created "2022-07-14" @default.
- W4285297837 creator A5031964984 @default.
- W4285297837 creator A5048267931 @default.
- W4285297837 creator A5054863124 @default.
- W4285297837 creator A5061303006 @default.
- W4285297837 creator A5067046312 @default.
- W4285297837 creator A5075620224 @default.
- W4285297837 date "2023-01-01" @default.
- W4285297837 modified "2023-09-23" @default.
- W4285297837 title "Learning-Based Adaptive Optimal Control for Flotation Processes Subject to Input Constraints" @default.
- W4285297837 cites W1973400890 @default.
- W4285297837 cites W1976231238 @default.
- W4285297837 cites W1976549637 @default.
- W4285297837 cites W1983171934 @default.
- W4285297837 cites W1987845501 @default.
- W4285297837 cites W2001471199 @default.
- W4285297837 cites W2003301653 @default.
- W4285297837 cites W2011866373 @default.
- W4285297837 cites W2014097640 @default.
- W4285297837 cites W2017758536 @default.
- W4285297837 cites W2018364731 @default.
- W4285297837 cites W2023017790 @default.
- W4285297837 cites W2037025184 @default.
- W4285297837 cites W2040365749 @default.
- W4285297837 cites W2060686658 @default.
- W4285297837 cites W2061901420 @default.
- W4285297837 cites W2084693097 @default.
- W4285297837 cites W2091904253 @default.
- W4285297837 cites W2091991886 @default.
- W4285297837 cites W2092155486 @default.
- W4285297837 cites W2092985495 @default.
- W4285297837 cites W2170973929 @default.
- W4285297837 cites W2190077958 @default.
- W4285297837 cites W2282672991 @default.
- W4285297837 cites W2301264200 @default.
- W4285297837 cites W2328827422 @default.
- W4285297837 cites W2484646121 @default.
- W4285297837 cites W2570494446 @default.
- W4285297837 cites W2765274447 @default.
- W4285297837 cites W2765781910 @default.
- W4285297837 cites W2766073597 @default.
- W4285297837 cites W2775595038 @default.
- W4285297837 cites W2783455139 @default.
- W4285297837 cites W2904928614 @default.
- W4285297837 cites W2921852856 @default.
- W4285297837 cites W2963273475 @default.
- W4285297837 cites W2980744885 @default.
- W4285297837 cites W3007772111 @default.
- W4285297837 cites W3016893731 @default.
- W4285297837 cites W3111531580 @default.
- W4285297837 cites W4213367573 @default.
- W4285297837 cites W4301886962 @default.
- W4285297837 doi "https://doi.org/10.1109/tcst.2022.3171110" @default.
- W4285297837 hasPublicationYear "2023" @default.
- W4285297837 type Work @default.
- W4285297837 citedByCount "0" @default.
- W4285297837 crossrefType "journal-article" @default.
- W4285297837 hasAuthorship W4285297837A5031964984 @default.
- W4285297837 hasAuthorship W4285297837A5048267931 @default.
- W4285297837 hasAuthorship W4285297837A5054863124 @default.
- W4285297837 hasAuthorship W4285297837A5061303006 @default.
- W4285297837 hasAuthorship W4285297837A5067046312 @default.
- W4285297837 hasAuthorship W4285297837A5075620224 @default.
- W4285297837 hasConcept C107464732 @default.
- W4285297837 hasConcept C117619785 @default.
- W4285297837 hasConcept C126255220 @default.
- W4285297837 hasConcept C126838900 @default.
- W4285297837 hasConcept C154945302 @default.
- W4285297837 hasConcept C172707124 @default.
- W4285297837 hasConcept C183115368 @default.
- W4285297837 hasConcept C183356978 @default.
- W4285297837 hasConcept C203479927 @default.
- W4285297837 hasConcept C2775924081 @default.
- W4285297837 hasConcept C33923547 @default.
- W4285297837 hasConcept C37404715 @default.
- W4285297837 hasConcept C41008148 @default.
- W4285297837 hasConcept C47446073 @default.
- W4285297837 hasConcept C58716799 @default.
- W4285297837 hasConcept C6557445 @default.
- W4285297837 hasConcept C71924100 @default.
- W4285297837 hasConcept C86803240 @default.
- W4285297837 hasConcept C91575142 @default.
- W4285297837 hasConceptScore W4285297837C107464732 @default.
- W4285297837 hasConceptScore W4285297837C117619785 @default.
- W4285297837 hasConceptScore W4285297837C126255220 @default.
- W4285297837 hasConceptScore W4285297837C126838900 @default.
- W4285297837 hasConceptScore W4285297837C154945302 @default.
- W4285297837 hasConceptScore W4285297837C172707124 @default.
- W4285297837 hasConceptScore W4285297837C183115368 @default.
- W4285297837 hasConceptScore W4285297837C183356978 @default.
- W4285297837 hasConceptScore W4285297837C203479927 @default.
- W4285297837 hasConceptScore W4285297837C2775924081 @default.
- W4285297837 hasConceptScore W4285297837C33923547 @default.
- W4285297837 hasConceptScore W4285297837C37404715 @default.
- W4285297837 hasConceptScore W4285297837C41008148 @default.
- W4285297837 hasConceptScore W4285297837C47446073 @default.
- W4285297837 hasConceptScore W4285297837C58716799 @default.