Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285297911> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W4285297911 endingPage "382" @default.
- W4285297911 startingPage "373" @default.
- W4285297911 abstract "In the contemporary era, artificial intelligence (AI) is making strides into every conceivable field. With advancements in place, there have been applications of machine learning (ML) in healthcare domain. Particularly for diagnosis of diseases with data-driven approach, ML algorithms are capable of learning from training data and make predictions. Many supervised ML algorithms came into existence with varied capabilities. However, they do rely on quality of training data. Unless quality of training data is ensured, they tend to result in mediocre performance. To overcome this problem, feature engineering or feature selection methods came into existence. From the literature, it is understood that feature selection plays crucial role in improving performance of prediction models. In this paper, a hybrid feature selection algorithm is proposed to leverage performance of machine learning models in brain stroke detection. The algorithm is named as Hybrid Measures Approach for Feature Engineering (HMA-FE). It returns best features that could contribute toward prediction of class labels. A prototype application is built to demonstrate the utility of the proposed framework and the underlying algorithms. The performance of prediction models are evaluated without and with feature engineering. Its empirical results showed the significant impact of proposed feature engineering on various brain stroke prediction models. The proposed framework adds value to Clinical Decision Support System (CDSS) used in healthcare units by supporting brain stroke diagnosis." @default.
- W4285297911 created "2022-07-14" @default.
- W4285297911 creator A5039279317 @default.
- W4285297911 creator A5081259219 @default.
- W4285297911 creator A5082532370 @default.
- W4285297911 creator A5092315225 @default.
- W4285297911 date "2022-01-01" @default.
- W4285297911 modified "2023-10-16" @default.
- W4285297911 title "A Hybrid Feature Selection for Improving Prediction Performance with a Brain Stroke Case Study" @default.
- W4285297911 cites W1981639529 @default.
- W4285297911 cites W1988169277 @default.
- W4285297911 cites W2007708972 @default.
- W4285297911 cites W2058281760 @default.
- W4285297911 cites W2074954553 @default.
- W4285297911 cites W2116649718 @default.
- W4285297911 cites W2144088986 @default.
- W4285297911 cites W2798206433 @default.
- W4285297911 cites W2949338465 @default.
- W4285297911 cites W3048191395 @default.
- W4285297911 cites W3124079586 @default.
- W4285297911 cites W3198627688 @default.
- W4285297911 cites W4244894279 @default.
- W4285297911 doi "https://doi.org/10.1007/978-981-19-2211-4_33" @default.
- W4285297911 hasPublicationYear "2022" @default.
- W4285297911 type Work @default.
- W4285297911 citedByCount "0" @default.
- W4285297911 crossrefType "book-chapter" @default.
- W4285297911 hasAuthorship W4285297911A5039279317 @default.
- W4285297911 hasAuthorship W4285297911A5081259219 @default.
- W4285297911 hasAuthorship W4285297911A5082532370 @default.
- W4285297911 hasAuthorship W4285297911A5092315225 @default.
- W4285297911 hasConcept C108583219 @default.
- W4285297911 hasConcept C111472728 @default.
- W4285297911 hasConcept C119857082 @default.
- W4285297911 hasConcept C124101348 @default.
- W4285297911 hasConcept C138885662 @default.
- W4285297911 hasConcept C148483581 @default.
- W4285297911 hasConcept C153083717 @default.
- W4285297911 hasConcept C154945302 @default.
- W4285297911 hasConcept C202444582 @default.
- W4285297911 hasConcept C2776401178 @default.
- W4285297911 hasConcept C2778827112 @default.
- W4285297911 hasConcept C2779530757 @default.
- W4285297911 hasConcept C33923547 @default.
- W4285297911 hasConcept C41008148 @default.
- W4285297911 hasConcept C41895202 @default.
- W4285297911 hasConcept C45804977 @default.
- W4285297911 hasConcept C81917197 @default.
- W4285297911 hasConcept C9652623 @default.
- W4285297911 hasConceptScore W4285297911C108583219 @default.
- W4285297911 hasConceptScore W4285297911C111472728 @default.
- W4285297911 hasConceptScore W4285297911C119857082 @default.
- W4285297911 hasConceptScore W4285297911C124101348 @default.
- W4285297911 hasConceptScore W4285297911C138885662 @default.
- W4285297911 hasConceptScore W4285297911C148483581 @default.
- W4285297911 hasConceptScore W4285297911C153083717 @default.
- W4285297911 hasConceptScore W4285297911C154945302 @default.
- W4285297911 hasConceptScore W4285297911C202444582 @default.
- W4285297911 hasConceptScore W4285297911C2776401178 @default.
- W4285297911 hasConceptScore W4285297911C2778827112 @default.
- W4285297911 hasConceptScore W4285297911C2779530757 @default.
- W4285297911 hasConceptScore W4285297911C33923547 @default.
- W4285297911 hasConceptScore W4285297911C41008148 @default.
- W4285297911 hasConceptScore W4285297911C41895202 @default.
- W4285297911 hasConceptScore W4285297911C45804977 @default.
- W4285297911 hasConceptScore W4285297911C81917197 @default.
- W4285297911 hasConceptScore W4285297911C9652623 @default.
- W4285297911 hasLocation W42852979111 @default.
- W4285297911 hasOpenAccess W4285297911 @default.
- W4285297911 hasPrimaryLocation W42852979111 @default.
- W4285297911 hasRelatedWork W2950010088 @default.
- W4285297911 hasRelatedWork W3043192815 @default.
- W4285297911 hasRelatedWork W3084079617 @default.
- W4285297911 hasRelatedWork W3160244858 @default.
- W4285297911 hasRelatedWork W3200179079 @default.
- W4285297911 hasRelatedWork W4249059645 @default.
- W4285297911 hasRelatedWork W4311106677 @default.
- W4285297911 hasRelatedWork W4312332763 @default.
- W4285297911 hasRelatedWork W4324137389 @default.
- W4285297911 hasRelatedWork W4366376591 @default.
- W4285297911 isParatext "false" @default.
- W4285297911 isRetracted "false" @default.
- W4285297911 workType "book-chapter" @default.