Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285298034> ?p ?o ?g. }
- W4285298034 endingPage "594" @default.
- W4285298034 startingPage "577" @default.
- W4285298034 abstract "The fast development of Internet technologies ignited the growth of techniques for information security that protect data, networks, systems, and applications from various threats. There are many types of threats. The dedicated denial of service attack (DDoS) is one of the most serious and widespread attacks on Internet resources. This attack is intended to paralyze the victim's system and cause the service to fail. This work is devoted to the classification of DDoS attacks in the special network environment called Software-Defined Networking (SDN) using machine learning algorithms. The analyzed dataset included instances of two classes: benign and malicious. As the dataset contained twenty-two features, the feature selection techniques were required for dimensionality reduction. In these experiments, the Information gain, the Chi-square, and the F-test were applied to decrease the number of features to ten. The classes were also not completely balanced, so undersampling, oversampling, and synthetic minority oversampling (SMOTE) techniques were used to balance classes equally. The previous research works observed the classification of DDoS attacks applying various feature selection techniques and one or more machine learning algorithms. Still, they did not pay much attention to classifying the combinations of feature selection and balancing methods with different machine learning algorithms. This work is devoted to the classification of datasets with eight machine learning algorithms: naïve Bayes, logistic regression, support vector machine, k-nearest neighbors, decision tree, random forest, XGBoost, and CatBoost. In the experimental results, the Information gain and F-test feature selection methods achieved better performance with all eight ML algorithms than with the Chi-square technique. Furthermore, the accuracy values of the oversampled and SMOTE datasets were higher than that of the undersampled and imbalanced datasets. Among machine learning algorithms, the accuracy of support vector machine, logistic regression, and naïve Bayes fluctuates between 0.59 and 0.75, while decision tree, random forest, XGBoost, and CatBoost allowed achieving values around 0.99 and 1.00 with all feature selection and class balancing techniques among all the algorithms." @default.
- W4285298034 created "2022-07-14" @default.
- W4285298034 creator A5001999495 @default.
- W4285298034 creator A5004291770 @default.
- W4285298034 creator A5010050978 @default.
- W4285298034 creator A5033151632 @default.
- W4285298034 creator A5043952133 @default.
- W4285298034 date "2022-01-01" @default.
- W4285298034 modified "2023-10-15" @default.
- W4285298034 title "Comprehensive DDoS Attack Classification Using Machine Learning Algorithms" @default.
- W4285298034 cites W2615133144 @default.
- W4285298034 cites W2619799366 @default.
- W4285298034 cites W2979323854 @default.
- W4285298034 cites W3030499398 @default.
- W4285298034 cites W3036749504 @default.
- W4285298034 cites W3120450981 @default.
- W4285298034 cites W3124340574 @default.
- W4285298034 cites W3161554626 @default.
- W4285298034 cites W3182114900 @default.
- W4285298034 cites W3202952191 @default.
- W4285298034 cites W3209270416 @default.
- W4285298034 cites W3209291644 @default.
- W4285298034 cites W3209469313 @default.
- W4285298034 cites W3210854102 @default.
- W4285298034 cites W3213057391 @default.
- W4285298034 cites W3213111842 @default.
- W4285298034 cites W3216063557 @default.
- W4285298034 doi "https://doi.org/10.32604/cmc.2022.026552" @default.
- W4285298034 hasPublicationYear "2022" @default.
- W4285298034 type Work @default.
- W4285298034 citedByCount "0" @default.
- W4285298034 crossrefType "journal-article" @default.
- W4285298034 hasAuthorship W4285298034A5001999495 @default.
- W4285298034 hasAuthorship W4285298034A5004291770 @default.
- W4285298034 hasAuthorship W4285298034A5010050978 @default.
- W4285298034 hasAuthorship W4285298034A5033151632 @default.
- W4285298034 hasAuthorship W4285298034A5043952133 @default.
- W4285298034 hasBestOaLocation W42852980341 @default.
- W4285298034 hasConcept C110083411 @default.
- W4285298034 hasConcept C110875604 @default.
- W4285298034 hasConcept C11413529 @default.
- W4285298034 hasConcept C119857082 @default.
- W4285298034 hasConcept C12267149 @default.
- W4285298034 hasConcept C124101348 @default.
- W4285298034 hasConcept C136536468 @default.
- W4285298034 hasConcept C136764020 @default.
- W4285298034 hasConcept C138885662 @default.
- W4285298034 hasConcept C148483581 @default.
- W4285298034 hasConcept C154945302 @default.
- W4285298034 hasConcept C169258074 @default.
- W4285298034 hasConcept C182590292 @default.
- W4285298034 hasConcept C2776401178 @default.
- W4285298034 hasConcept C38652104 @default.
- W4285298034 hasConcept C38822068 @default.
- W4285298034 hasConcept C41008148 @default.
- W4285298034 hasConcept C41895202 @default.
- W4285298034 hasConcept C52001869 @default.
- W4285298034 hasConcept C52003472 @default.
- W4285298034 hasConcept C70518039 @default.
- W4285298034 hasConcept C84525736 @default.
- W4285298034 hasConceptScore W4285298034C110083411 @default.
- W4285298034 hasConceptScore W4285298034C110875604 @default.
- W4285298034 hasConceptScore W4285298034C11413529 @default.
- W4285298034 hasConceptScore W4285298034C119857082 @default.
- W4285298034 hasConceptScore W4285298034C12267149 @default.
- W4285298034 hasConceptScore W4285298034C124101348 @default.
- W4285298034 hasConceptScore W4285298034C136536468 @default.
- W4285298034 hasConceptScore W4285298034C136764020 @default.
- W4285298034 hasConceptScore W4285298034C138885662 @default.
- W4285298034 hasConceptScore W4285298034C148483581 @default.
- W4285298034 hasConceptScore W4285298034C154945302 @default.
- W4285298034 hasConceptScore W4285298034C169258074 @default.
- W4285298034 hasConceptScore W4285298034C182590292 @default.
- W4285298034 hasConceptScore W4285298034C2776401178 @default.
- W4285298034 hasConceptScore W4285298034C38652104 @default.
- W4285298034 hasConceptScore W4285298034C38822068 @default.
- W4285298034 hasConceptScore W4285298034C41008148 @default.
- W4285298034 hasConceptScore W4285298034C41895202 @default.
- W4285298034 hasConceptScore W4285298034C52001869 @default.
- W4285298034 hasConceptScore W4285298034C52003472 @default.
- W4285298034 hasConceptScore W4285298034C70518039 @default.
- W4285298034 hasConceptScore W4285298034C84525736 @default.
- W4285298034 hasIssue "1" @default.
- W4285298034 hasLocation W42852980341 @default.
- W4285298034 hasOpenAccess W4285298034 @default.
- W4285298034 hasPrimaryLocation W42852980341 @default.
- W4285298034 hasRelatedWork W2625756773 @default.
- W4285298034 hasRelatedWork W2904660175 @default.
- W4285298034 hasRelatedWork W2985924212 @default.
- W4285298034 hasRelatedWork W2995276271 @default.
- W4285298034 hasRelatedWork W3034132578 @default.
- W4285298034 hasRelatedWork W3193372619 @default.
- W4285298034 hasRelatedWork W3210877509 @default.
- W4285298034 hasRelatedWork W4221125739 @default.
- W4285298034 hasRelatedWork W4285298034 @default.
- W4285298034 hasRelatedWork W4377964522 @default.
- W4285298034 hasVolume "73" @default.
- W4285298034 isParatext "false" @default.