Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285299565> ?p ?o ?g. }
- W4285299565 endingPage "71002" @default.
- W4285299565 startingPage "70980" @default.
- W4285299565 abstract "Determining the demographic characteristics of a person post-mortem is a fundamental task for forensic experts, and the dental system is a crucial source of those information. Those characteristics, namely age and sex, can reliably be determined. The mandible and individual teeth survive even the harshest conditions, making them a prime target for forensic analysis. Current methods in forensic odontology rely on time-consuming manual measurements and reference tables, many of which rely on the correct determination of the tooth type. This study thoroughly explores the applicability of deep learning for sex assessment, age estimation, and tooth type determination from x-ray images of individual teeth. A series of models that use state-of-the-art feature extraction architectures and attention have been trained and evaluated. Their hyperparameters have been explored and optimized using a combination of grid and random search, totaling over a thousand experiments and 14076 hours of GPU compute time. Our dataset contains 86495 individual tooth x-ray image samples, with a subset of 7630 images having additional information about tooth alterations. The best-performing models are fine-tuned, the impact of tooth alterations is analyzed, and model performance is compared to current methods in forensic odontology literature. We achieve an accuracy of 76.41% for sex assessment, a median absolute error of 4.94 years for age estimation, and an accuracy of 87.24% to 99.15% for tooth type determination. The constructed models are fully automated and fast, their results are reproducible, and the performance is equal to or better than current state-of-the-art methods in forensic odontology." @default.
- W4285299565 created "2022-07-14" @default.
- W4285299565 creator A5039808345 @default.
- W4285299565 creator A5039916142 @default.
- W4285299565 creator A5042514211 @default.
- W4285299565 creator A5080016463 @default.
- W4285299565 date "2022-01-01" @default.
- W4285299565 modified "2023-09-26" @default.
- W4285299565 title "A Comprehensive Exploration of Neural Networks for Forensic Analysis of Adult Single Tooth X-Ray Images" @default.
- W4285299565 cites W117680132 @default.
- W4285299565 cites W1970992510 @default.
- W4285299565 cites W1971593215 @default.
- W4285299565 cites W1972564721 @default.
- W4285299565 cites W1975479203 @default.
- W4285299565 cites W1989892662 @default.
- W4285299565 cites W1990947667 @default.
- W4285299565 cites W1995648640 @default.
- W4285299565 cites W1996496130 @default.
- W4285299565 cites W2006305540 @default.
- W4285299565 cites W2014396331 @default.
- W4285299565 cites W2017359450 @default.
- W4285299565 cites W2035753055 @default.
- W4285299565 cites W2039076681 @default.
- W4285299565 cites W2045528961 @default.
- W4285299565 cites W2048689870 @default.
- W4285299565 cites W2060992925 @default.
- W4285299565 cites W2070239316 @default.
- W4285299565 cites W2071440753 @default.
- W4285299565 cites W2078606952 @default.
- W4285299565 cites W2084804188 @default.
- W4285299565 cites W2095851891 @default.
- W4285299565 cites W2101244788 @default.
- W4285299565 cites W2104399598 @default.
- W4285299565 cites W2110036422 @default.
- W4285299565 cites W2185548947 @default.
- W4285299565 cites W2194775991 @default.
- W4285299565 cites W2264304419 @default.
- W4285299565 cites W2461968144 @default.
- W4285299565 cites W2515796972 @default.
- W4285299565 cites W2531409750 @default.
- W4285299565 cites W2546410677 @default.
- W4285299565 cites W2582120320 @default.
- W4285299565 cites W2603184192 @default.
- W4285299565 cites W2731161895 @default.
- W4285299565 cites W2735124842 @default.
- W4285299565 cites W2761740771 @default.
- W4285299565 cites W2773586194 @default.
- W4285299565 cites W2782116667 @default.
- W4285299565 cites W2792632869 @default.
- W4285299565 cites W2887280559 @default.
- W4285299565 cites W2887628491 @default.
- W4285299565 cites W2898137575 @default.
- W4285299565 cites W2910913949 @default.
- W4285299565 cites W2920073091 @default.
- W4285299565 cites W2962895999 @default.
- W4285299565 cites W2963446712 @default.
- W4285299565 cites W2964350391 @default.
- W4285299565 cites W3003562648 @default.
- W4285299565 cites W3036077216 @default.
- W4285299565 cites W3036361522 @default.
- W4285299565 cites W3087507349 @default.
- W4285299565 cites W3092161847 @default.
- W4285299565 cites W3095910727 @default.
- W4285299565 cites W3109109814 @default.
- W4285299565 cites W3119883464 @default.
- W4285299565 cites W3130983831 @default.
- W4285299565 cites W3146366485 @default.
- W4285299565 cites W3182609974 @default.
- W4285299565 cites W3201043781 @default.
- W4285299565 cites W3203393454 @default.
- W4285299565 cites W4200532988 @default.
- W4285299565 cites W4205151685 @default.
- W4285299565 cites W4246226690 @default.
- W4285299565 doi "https://doi.org/10.1109/access.2022.3187959" @default.
- W4285299565 hasPublicationYear "2022" @default.
- W4285299565 type Work @default.
- W4285299565 citedByCount "0" @default.
- W4285299565 crossrefType "journal-article" @default.
- W4285299565 hasAuthorship W4285299565A5039808345 @default.
- W4285299565 hasAuthorship W4285299565A5039916142 @default.
- W4285299565 hasAuthorship W4285299565A5042514211 @default.
- W4285299565 hasAuthorship W4285299565A5080016463 @default.
- W4285299565 hasBestOaLocation W42852995651 @default.
- W4285299565 hasConcept C108583219 @default.
- W4285299565 hasConcept C138885662 @default.
- W4285299565 hasConcept C153180895 @default.
- W4285299565 hasConcept C154945302 @default.
- W4285299565 hasConcept C2776401178 @default.
- W4285299565 hasConcept C41008148 @default.
- W4285299565 hasConcept C41895202 @default.
- W4285299565 hasConcept C50644808 @default.
- W4285299565 hasConcept C8642999 @default.
- W4285299565 hasConceptScore W4285299565C108583219 @default.
- W4285299565 hasConceptScore W4285299565C138885662 @default.
- W4285299565 hasConceptScore W4285299565C153180895 @default.
- W4285299565 hasConceptScore W4285299565C154945302 @default.
- W4285299565 hasConceptScore W4285299565C2776401178 @default.
- W4285299565 hasConceptScore W4285299565C41008148 @default.