Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285300963> ?p ?o ?g. }
- W4285300963 endingPage "184203" @default.
- W4285300963 startingPage "184203" @default.
- W4285300963 abstract "Second harmonic generation (SHG) is an effective way to generate short wavelength laser with high power. The SHG is accompanied with the absorptions of fundamental waves and harmonic waves, which converts a fraction of the two waves deposit energy into heat, causing a temperature gradient along the radial direction of the periodically poled potassium titanyl phosphate (PPKTP) crystal. The inhomogeneous temperature distribution causes thermal lensing in the crystal. The thermal lensing effect will deform the spatial mode of the SHG cavity and result in the mode-mismatching of the fundamental wave to the SHG cavity, and therefore the conversion efficiency of SHG process is reduced. Moreover, with the increase of injected fundamental wave power, the influence caused by thermal lens becomes more and more serious. In order to obtain a high-efficiency frequency conversion, it is necessary to take the measure to minimize the effect caused by thermal lensing. In this paper, we report on a high efficiency generation of green laser at 532 nm by external cavity SHG process with a semi-monolithic standing cavity. The influences of thermal lens effect on the optimal conversion efficiency in different semi-monolithic cavities are theoretically analyzed. The variations of conversion efficiency with the pump power in “plane-concave” semi-monolithic cavity based on parallel crystal and also in “concave-concave” semi-monolithic cavity based on concave crystal are quantitatively analyzed. In experiments, two types of cavity structures are built to measure the variation of frequency doubling conversion efficiency with pump power. For the “plane-concave” semi-monolithic cavity, the maximum green laser power of 747 mW is obtained and the corresponding conversion efficiency reaches 93.4%±3%, with 800 mW infrared laser injected. For the “concave-concave” semi-monolithic cavity, the maximum green laser power of 529 mW is obtained and the corresponding conversion efficiency is 88.2% ± 3%, with 600 mW infrared laser injected. The results show that the thermal lens affects the optimal conversion efficiency more seriously in “concave-concave” semi-monolithic cavity than in “plane-concave” semi-monolithic cavity. Furthermore, the influence of thermal lens effect turns higher and higher with the increase of the loss in the cavity. It is obvious that the “plane-concave” semi-monolithic cavity is more suitable for the SHG process and has many potential applications in quantum optics and cold atom physics and provides a guidance for future research on high-efficiency SHG process." @default.
- W4285300963 created "2022-07-14" @default.
- W4285300963 creator A5000432967 @default.
- W4285300963 creator A5000444357 @default.
- W4285300963 creator A5026556668 @default.
- W4285300963 creator A5041608565 @default.
- W4285300963 creator A5045796734 @default.
- W4285300963 creator A5054228072 @default.
- W4285300963 creator A5065481348 @default.
- W4285300963 creator A5073495649 @default.
- W4285300963 creator A5085963164 @default.
- W4285300963 creator A5087361313 @default.
- W4285300963 date "2022-01-01" @default.
- W4285300963 modified "2023-10-01" @default.
- W4285300963 title "Influence of thermal lens effect on second harmonic process in semi-monolithic cavity scheme" @default.
- W4285300963 cites W1858309644 @default.
- W4285300963 cites W1968536093 @default.
- W4285300963 cites W1969070414 @default.
- W4285300963 cites W1975879280 @default.
- W4285300963 cites W1982813608 @default.
- W4285300963 cites W1983087852 @default.
- W4285300963 cites W1989387093 @default.
- W4285300963 cites W1996841581 @default.
- W4285300963 cites W1999047845 @default.
- W4285300963 cites W1999327493 @default.
- W4285300963 cites W2004041631 @default.
- W4285300963 cites W2005826273 @default.
- W4285300963 cites W2006739387 @default.
- W4285300963 cites W2008688974 @default.
- W4285300963 cites W2021993615 @default.
- W4285300963 cites W2024023779 @default.
- W4285300963 cites W2042959570 @default.
- W4285300963 cites W2049736146 @default.
- W4285300963 cites W2054022453 @default.
- W4285300963 cites W2063880994 @default.
- W4285300963 cites W2085460244 @default.
- W4285300963 cites W2093739109 @default.
- W4285300963 cites W2094234769 @default.
- W4285300963 cites W2115730420 @default.
- W4285300963 cites W2160240428 @default.
- W4285300963 cites W2211113321 @default.
- W4285300963 cites W2468832587 @default.
- W4285300963 cites W2545610558 @default.
- W4285300963 cites W2561383023 @default.
- W4285300963 cites W2732382004 @default.
- W4285300963 cites W2745795007 @default.
- W4285300963 cites W2761458048 @default.
- W4285300963 cites W2772947193 @default.
- W4285300963 cites W2795782569 @default.
- W4285300963 cites W2799666874 @default.
- W4285300963 cites W2891375064 @default.
- W4285300963 cites W2902836776 @default.
- W4285300963 cites W2924330333 @default.
- W4285300963 cites W2956066842 @default.
- W4285300963 cites W2974906516 @default.
- W4285300963 cites W3017603162 @default.
- W4285300963 cites W3018026877 @default.
- W4285300963 cites W3105049666 @default.
- W4285300963 cites W3106023432 @default.
- W4285300963 cites W3111677750 @default.
- W4285300963 cites W3115603916 @default.
- W4285300963 cites W4211248144 @default.
- W4285300963 cites W4245697504 @default.
- W4285300963 doi "https://doi.org/10.7498/aps.71.20220575" @default.
- W4285300963 hasPublicationYear "2022" @default.
- W4285300963 type Work @default.
- W4285300963 citedByCount "1" @default.
- W4285300963 countsByYear W42853009632023 @default.
- W4285300963 crossrefType "journal-article" @default.
- W4285300963 hasAuthorship W4285300963A5000432967 @default.
- W4285300963 hasAuthorship W4285300963A5000444357 @default.
- W4285300963 hasAuthorship W4285300963A5026556668 @default.
- W4285300963 hasAuthorship W4285300963A5041608565 @default.
- W4285300963 hasAuthorship W4285300963A5045796734 @default.
- W4285300963 hasAuthorship W4285300963A5054228072 @default.
- W4285300963 hasAuthorship W4285300963A5065481348 @default.
- W4285300963 hasAuthorship W4285300963A5073495649 @default.
- W4285300963 hasAuthorship W4285300963A5085963164 @default.
- W4285300963 hasAuthorship W4285300963A5087361313 @default.
- W4285300963 hasBestOaLocation W42853009631 @default.
- W4285300963 hasConcept C120665830 @default.
- W4285300963 hasConcept C121332964 @default.
- W4285300963 hasConcept C153294291 @default.
- W4285300963 hasConcept C15336307 @default.
- W4285300963 hasConcept C17163034 @default.
- W4285300963 hasConcept C192562407 @default.
- W4285300963 hasConcept C199360897 @default.
- W4285300963 hasConcept C204530211 @default.
- W4285300963 hasConcept C206991015 @default.
- W4285300963 hasConcept C2781285689 @default.
- W4285300963 hasConcept C30713254 @default.
- W4285300963 hasConcept C33163612 @default.
- W4285300963 hasConcept C41008148 @default.
- W4285300963 hasConcept C49040817 @default.
- W4285300963 hasConcept C520434653 @default.
- W4285300963 hasConcept C6260449 @default.
- W4285300963 hasConcept C99568719 @default.
- W4285300963 hasConceptScore W4285300963C120665830 @default.