Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285301845> ?p ?o ?g. }
- W4285301845 endingPage "4013" @default.
- W4285301845 startingPage "4004" @default.
- W4285301845 abstract "Lightning is one of the leading causes of electrical outages in South Africa, and the most severe weather-related killer in the country. Unfortunately for risk management, quantitative lightning prediction remains challenging. In this study, we evaluate the accuracy of LSTM neural network model variants on thunderstorm severity using remote sensing weather data. These LSTM model variants are LSTM-FC, CNN-LSTM and ConvLSTM variants. The CNN-LSTM and ConvLSTM models recognize spatio-temporal features which assist processing. The data used consists of lightning detection network data from the SALDN and weather-feature information from the network of weather stations operated by the SAWS. We forecast thunderstorm severity every hour, as quantified by lightning flash frequency, between December-2013 and March-2016 for North-Eastern South Africa. Models were trained on data between July-2008 to November 2013. All models minimized MSE but evaluated on Mean Absolute Error (MAE flashes.hr-1). We also varied models based on input datasets: SALDN-only, SAWS-only and SALDN+SAWS datasets. We found the CNN-LSTM model (MAE=51) performed best amongst LSTM model variants (LSTM-FC MAE=67; ConvLSTM MAE=86). When models were evaluated between input datasets, we found that SALDN only (MAE=59) outperformed SAWS only and SALDN+SAWS (SAWS MAE=74; SAWS+SALDN MAE=70). We conclude that CNN-LSTM models outperform prediction accuracy compared with ConvLSTM and LSTM-FC models but consideration on input data is required." @default.
- W4285301845 created "2022-07-14" @default.
- W4285301845 creator A5009807593 @default.
- W4285301845 creator A5023095026 @default.
- W4285301845 creator A5036259093 @default.
- W4285301845 creator A5083977323 @default.
- W4285301845 date "2022-01-01" @default.
- W4285301845 modified "2023-10-16" @default.
- W4285301845 title "Deep Learning Prediction of Thunderstorm Severity Using Remote Sensing Weather Data" @default.
- W4285301845 cites W1495326998 @default.
- W4285301845 cites W2009736251 @default.
- W4285301845 cites W2016210396 @default.
- W4285301845 cites W2039848571 @default.
- W4285301845 cites W2081108495 @default.
- W4285301845 cites W2100541144 @default.
- W4285301845 cites W2211217193 @default.
- W4285301845 cites W2488217432 @default.
- W4285301845 cites W2564175354 @default.
- W4285301845 cites W2586663700 @default.
- W4285301845 cites W2605448180 @default.
- W4285301845 cites W2898270051 @default.
- W4285301845 cites W2898589949 @default.
- W4285301845 cites W2913197505 @default.
- W4285301845 cites W2944681516 @default.
- W4285301845 cites W2948387536 @default.
- W4285301845 cites W2951554591 @default.
- W4285301845 cites W2954439280 @default.
- W4285301845 cites W2984597037 @default.
- W4285301845 cites W3001898521 @default.
- W4285301845 cites W3021095272 @default.
- W4285301845 cites W3037712939 @default.
- W4285301845 cites W3043084273 @default.
- W4285301845 cites W3082494362 @default.
- W4285301845 cites W3083934311 @default.
- W4285301845 cites W3087634397 @default.
- W4285301845 cites W3097575078 @default.
- W4285301845 cites W3158813974 @default.
- W4285301845 cites W3161037506 @default.
- W4285301845 cites W3202541479 @default.
- W4285301845 cites W3214598849 @default.
- W4285301845 cites W4205183495 @default.
- W4285301845 doi "https://doi.org/10.1109/jstars.2022.3172785" @default.
- W4285301845 hasPublicationYear "2022" @default.
- W4285301845 type Work @default.
- W4285301845 citedByCount "5" @default.
- W4285301845 countsByYear W42853018452022 @default.
- W4285301845 countsByYear W42853018452023 @default.
- W4285301845 crossrefType "journal-article" @default.
- W4285301845 hasAuthorship W4285301845A5009807593 @default.
- W4285301845 hasAuthorship W4285301845A5023095026 @default.
- W4285301845 hasAuthorship W4285301845A5036259093 @default.
- W4285301845 hasAuthorship W4285301845A5083977323 @default.
- W4285301845 hasBestOaLocation W42853018451 @default.
- W4285301845 hasConcept C108583219 @default.
- W4285301845 hasConcept C119857082 @default.
- W4285301845 hasConcept C121332964 @default.
- W4285301845 hasConcept C153180895 @default.
- W4285301845 hasConcept C153294291 @default.
- W4285301845 hasConcept C154945302 @default.
- W4285301845 hasConcept C163258240 @default.
- W4285301845 hasConcept C205649164 @default.
- W4285301845 hasConcept C21001229 @default.
- W4285301845 hasConcept C2780500098 @default.
- W4285301845 hasConcept C41008148 @default.
- W4285301845 hasConcept C50644808 @default.
- W4285301845 hasConcept C62520636 @default.
- W4285301845 hasConcept C69398868 @default.
- W4285301845 hasConcept C80316258 @default.
- W4285301845 hasConceptScore W4285301845C108583219 @default.
- W4285301845 hasConceptScore W4285301845C119857082 @default.
- W4285301845 hasConceptScore W4285301845C121332964 @default.
- W4285301845 hasConceptScore W4285301845C153180895 @default.
- W4285301845 hasConceptScore W4285301845C153294291 @default.
- W4285301845 hasConceptScore W4285301845C154945302 @default.
- W4285301845 hasConceptScore W4285301845C163258240 @default.
- W4285301845 hasConceptScore W4285301845C205649164 @default.
- W4285301845 hasConceptScore W4285301845C21001229 @default.
- W4285301845 hasConceptScore W4285301845C2780500098 @default.
- W4285301845 hasConceptScore W4285301845C41008148 @default.
- W4285301845 hasConceptScore W4285301845C50644808 @default.
- W4285301845 hasConceptScore W4285301845C62520636 @default.
- W4285301845 hasConceptScore W4285301845C69398868 @default.
- W4285301845 hasConceptScore W4285301845C80316258 @default.
- W4285301845 hasLocation W42853018451 @default.
- W4285301845 hasOpenAccess W4285301845 @default.
- W4285301845 hasPrimaryLocation W42853018451 @default.
- W4285301845 hasRelatedWork W2081751326 @default.
- W4285301845 hasRelatedWork W2107012025 @default.
- W4285301845 hasRelatedWork W2288863095 @default.
- W4285301845 hasRelatedWork W2469595102 @default.
- W4285301845 hasRelatedWork W2491255875 @default.
- W4285301845 hasRelatedWork W2742115134 @default.
- W4285301845 hasRelatedWork W4290992841 @default.
- W4285301845 hasRelatedWork W4304208343 @default.
- W4285301845 hasRelatedWork W4380075502 @default.
- W4285301845 hasRelatedWork W593206088 @default.
- W4285301845 hasVolume "15" @default.
- W4285301845 isParatext "false" @default.