Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285301852> ?p ?o ?g. }
- W4285301852 endingPage "5030" @default.
- W4285301852 startingPage "5021" @default.
- W4285301852 abstract "The increase in capacity provided by coupled space division multiplexing (SDM) systems is fundamentally limited by mode-dependent gain (MDG) and amplified spontaneous emission (ASE) noise. Therefore, monitoring MDG and optical signal-to-noise ratio (SNR) is essential for accurate performance evaluation and troubleshooting. Recent works show that the conventional MDG estimation method based on the transfer matrix of multiple-input multiple-output (MIMO) equalizers optimizing the minimum mean square error (MMSE) underestimates the actual value at low SNRs. Besides, estimating the optical SNR itself is not a trivial task in SDM systems, as MDG strongly influences the electrical SNR after the equalizer. In a recent work we propose an MDG and SNR estimation method using artificial neural networks (ANNs). The proposed ANN-based method processes features extracted at the receiver after digital signal processing (DSP). In this paper, we discuss the ANN-based method in detail, and validate it in an experimental 73-km 3-mode transmission link with controlled MDG and SNR. After validation, we apply the method in a case study consisting of an experimental long-haul 6-mode link. The results show that the ANN estimates both MDG and SNR with high accuracy, outperforming conventional methods." @default.
- W4285301852 created "2022-07-14" @default.
- W4285301852 creator A5008180043 @default.
- W4285301852 creator A5010877356 @default.
- W4285301852 creator A5046035765 @default.
- W4285301852 creator A5046256248 @default.
- W4285301852 creator A5072328343 @default.
- W4285301852 creator A5072634101 @default.
- W4285301852 creator A5076391205 @default.
- W4285301852 creator A5080142223 @default.
- W4285301852 creator A5086497575 @default.
- W4285301852 creator A5089580264 @default.
- W4285301852 date "2022-08-01" @default.
- W4285301852 modified "2023-10-16" @default.
- W4285301852 title "MDG and SNR Estimation in SDM Transmission Based on Artificial Neural Networks" @default.
- W4285301852 cites W2012480069 @default.
- W4285301852 cites W2014496090 @default.
- W4285301852 cites W2015519306 @default.
- W4285301852 cites W2026964677 @default.
- W4285301852 cites W2060574886 @default.
- W4285301852 cites W2114742786 @default.
- W4285301852 cites W2133401839 @default.
- W4285301852 cites W2139104935 @default.
- W4285301852 cites W2142187810 @default.
- W4285301852 cites W2148379701 @default.
- W4285301852 cites W2157195543 @default.
- W4285301852 cites W2159784873 @default.
- W4285301852 cites W2294295251 @default.
- W4285301852 cites W2415109429 @default.
- W4285301852 cites W2524287610 @default.
- W4285301852 cites W2585188371 @default.
- W4285301852 cites W2777770246 @default.
- W4285301852 cites W2782785262 @default.
- W4285301852 cites W2798932667 @default.
- W4285301852 cites W2799260095 @default.
- W4285301852 cites W2805247594 @default.
- W4285301852 cites W2936400297 @default.
- W4285301852 cites W2994147625 @default.
- W4285301852 cites W3009818513 @default.
- W4285301852 cites W3010474094 @default.
- W4285301852 cites W3082231256 @default.
- W4285301852 cites W3082806766 @default.
- W4285301852 cites W3089447620 @default.
- W4285301852 cites W3098668551 @default.
- W4285301852 cites W3103642809 @default.
- W4285301852 cites W3190533134 @default.
- W4285301852 doi "https://doi.org/10.1109/jlt.2022.3174778" @default.
- W4285301852 hasPublicationYear "2022" @default.
- W4285301852 type Work @default.
- W4285301852 citedByCount "1" @default.
- W4285301852 countsByYear W42853018522023 @default.
- W4285301852 crossrefType "journal-article" @default.
- W4285301852 hasAuthorship W4285301852A5008180043 @default.
- W4285301852 hasAuthorship W4285301852A5010877356 @default.
- W4285301852 hasAuthorship W4285301852A5046035765 @default.
- W4285301852 hasAuthorship W4285301852A5046256248 @default.
- W4285301852 hasAuthorship W4285301852A5072328343 @default.
- W4285301852 hasAuthorship W4285301852A5072634101 @default.
- W4285301852 hasAuthorship W4285301852A5076391205 @default.
- W4285301852 hasAuthorship W4285301852A5080142223 @default.
- W4285301852 hasAuthorship W4285301852A5086497575 @default.
- W4285301852 hasAuthorship W4285301852A5089580264 @default.
- W4285301852 hasBestOaLocation W42853018522 @default.
- W4285301852 hasConcept C111919701 @default.
- W4285301852 hasConcept C11413529 @default.
- W4285301852 hasConcept C115961682 @default.
- W4285301852 hasConcept C127413603 @default.
- W4285301852 hasConcept C13944312 @default.
- W4285301852 hasConcept C147494362 @default.
- W4285301852 hasConcept C154945302 @default.
- W4285301852 hasConcept C19275194 @default.
- W4285301852 hasConcept C207987634 @default.
- W4285301852 hasConcept C24326235 @default.
- W4285301852 hasConcept C41008148 @default.
- W4285301852 hasConcept C50644808 @default.
- W4285301852 hasConcept C54197355 @default.
- W4285301852 hasConcept C761482 @default.
- W4285301852 hasConcept C76155785 @default.
- W4285301852 hasConcept C99498987 @default.
- W4285301852 hasConceptScore W4285301852C111919701 @default.
- W4285301852 hasConceptScore W4285301852C11413529 @default.
- W4285301852 hasConceptScore W4285301852C115961682 @default.
- W4285301852 hasConceptScore W4285301852C127413603 @default.
- W4285301852 hasConceptScore W4285301852C13944312 @default.
- W4285301852 hasConceptScore W4285301852C147494362 @default.
- W4285301852 hasConceptScore W4285301852C154945302 @default.
- W4285301852 hasConceptScore W4285301852C19275194 @default.
- W4285301852 hasConceptScore W4285301852C207987634 @default.
- W4285301852 hasConceptScore W4285301852C24326235 @default.
- W4285301852 hasConceptScore W4285301852C41008148 @default.
- W4285301852 hasConceptScore W4285301852C50644808 @default.
- W4285301852 hasConceptScore W4285301852C54197355 @default.
- W4285301852 hasConceptScore W4285301852C761482 @default.
- W4285301852 hasConceptScore W4285301852C76155785 @default.
- W4285301852 hasConceptScore W4285301852C99498987 @default.
- W4285301852 hasFunder F4320320997 @default.
- W4285301852 hasIssue "15" @default.
- W4285301852 hasLocation W42853018521 @default.