Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285303928> ?p ?o ?g. }
- W4285303928 endingPage "3773" @default.
- W4285303928 startingPage "3754" @default.
- W4285303928 abstract "Millimeter-wave (mmWave) radar has been widely used in autonomous driving due to its good performance under harsh weather conditions. In recent years, with the development of mmWave radar hardware performance, radar point clouds, as an important data format of mmWave radar, have been widely used in high-level perception tasks of mobile robots and autonomous driving. However, at present, compared to LiDAR point clouds, in common application scenes of mobile robots, mmWave radar point clouds have shortcomings such as sparsity and containing many “ghost” targets. Therefore, in this article, we analyze the reasons that cause these problems and propose a new method for point cloud generation as well as a new evaluation metric. After building a new dataset and carrying out experiments in real-world scenes, our method shows better performance on the quality of radar point clouds compared to other methods. In addition, by evaluating the performance of applying the high-quality radar point clouds to object detection tasks as well as localization and mapping tasks, the result shows that radar point clouds generated using our method can significantly improve the environment perception ability of mobile robots." @default.
- W4285303928 created "2022-07-14" @default.
- W4285303928 creator A5035903470 @default.
- W4285303928 creator A5072056125 @default.
- W4285303928 creator A5074480992 @default.
- W4285303928 creator A5082294531 @default.
- W4285303928 date "2022-12-01" @default.
- W4285303928 modified "2023-10-18" @default.
- W4285303928 title "A Novel Radar Point Cloud Generation Method for Robot Environment Perception" @default.
- W4285303928 cites W1984186893 @default.
- W4285303928 cites W2021851106 @default.
- W4285303928 cites W2030878855 @default.
- W4285303928 cites W2079537345 @default.
- W4285303928 cites W2134236847 @default.
- W4285303928 cites W2158662637 @default.
- W4285303928 cites W2411093439 @default.
- W4285303928 cites W2443717701 @default.
- W4285303928 cites W2507412359 @default.
- W4285303928 cites W2592680288 @default.
- W4285303928 cites W2782189190 @default.
- W4285303928 cites W2783287825 @default.
- W4285303928 cites W2891649842 @default.
- W4285303928 cites W2909908358 @default.
- W4285303928 cites W2942779160 @default.
- W4285303928 cites W2947278483 @default.
- W4285303928 cites W2963351448 @default.
- W4285303928 cites W2967040347 @default.
- W4285303928 cites W2970479183 @default.
- W4285303928 cites W2973595938 @default.
- W4285303928 cites W2973772768 @default.
- W4285303928 cites W2978439184 @default.
- W4285303928 cites W2988715931 @default.
- W4285303928 cites W2989940015 @default.
- W4285303928 cites W2990710319 @default.
- W4285303928 cites W2998614245 @default.
- W4285303928 cites W3009950332 @default.
- W4285303928 cites W3018353706 @default.
- W4285303928 cites W3040360205 @default.
- W4285303928 cites W3087767329 @default.
- W4285303928 cites W3090266837 @default.
- W4285303928 cites W3090925395 @default.
- W4285303928 cites W3103179390 @default.
- W4285303928 cites W3103612787 @default.
- W4285303928 cites W3108136096 @default.
- W4285303928 cites W3109995084 @default.
- W4285303928 cites W3110918660 @default.
- W4285303928 cites W3116493117 @default.
- W4285303928 cites W3129179166 @default.
- W4285303928 cites W3130465612 @default.
- W4285303928 cites W3158378210 @default.
- W4285303928 cites W3163790949 @default.
- W4285303928 cites W3204554924 @default.
- W4285303928 cites W2940664476 @default.
- W4285303928 doi "https://doi.org/10.1109/tro.2022.3185831" @default.
- W4285303928 hasPublicationYear "2022" @default.
- W4285303928 type Work @default.
- W4285303928 citedByCount "8" @default.
- W4285303928 countsByYear W42853039282023 @default.
- W4285303928 crossrefType "journal-article" @default.
- W4285303928 hasAuthorship W4285303928A5035903470 @default.
- W4285303928 hasAuthorship W4285303928A5072056125 @default.
- W4285303928 hasAuthorship W4285303928A5074480992 @default.
- W4285303928 hasAuthorship W4285303928A5082294531 @default.
- W4285303928 hasConcept C10929652 @default.
- W4285303928 hasConcept C131979681 @default.
- W4285303928 hasConcept C134406370 @default.
- W4285303928 hasConcept C154945302 @default.
- W4285303928 hasConcept C161475128 @default.
- W4285303928 hasConcept C19966478 @default.
- W4285303928 hasConcept C205649164 @default.
- W4285303928 hasConcept C31972630 @default.
- W4285303928 hasConcept C41008148 @default.
- W4285303928 hasConcept C51399673 @default.
- W4285303928 hasConcept C554190296 @default.
- W4285303928 hasConcept C62649853 @default.
- W4285303928 hasConcept C76155785 @default.
- W4285303928 hasConcept C79403827 @default.
- W4285303928 hasConcept C90509273 @default.
- W4285303928 hasConceptScore W4285303928C10929652 @default.
- W4285303928 hasConceptScore W4285303928C131979681 @default.
- W4285303928 hasConceptScore W4285303928C134406370 @default.
- W4285303928 hasConceptScore W4285303928C154945302 @default.
- W4285303928 hasConceptScore W4285303928C161475128 @default.
- W4285303928 hasConceptScore W4285303928C19966478 @default.
- W4285303928 hasConceptScore W4285303928C205649164 @default.
- W4285303928 hasConceptScore W4285303928C31972630 @default.
- W4285303928 hasConceptScore W4285303928C41008148 @default.
- W4285303928 hasConceptScore W4285303928C51399673 @default.
- W4285303928 hasConceptScore W4285303928C554190296 @default.
- W4285303928 hasConceptScore W4285303928C62649853 @default.
- W4285303928 hasConceptScore W4285303928C76155785 @default.
- W4285303928 hasConceptScore W4285303928C79403827 @default.
- W4285303928 hasConceptScore W4285303928C90509273 @default.
- W4285303928 hasIssue "6" @default.
- W4285303928 hasLocation W42853039281 @default.
- W4285303928 hasOpenAccess W4285303928 @default.
- W4285303928 hasPrimaryLocation W42853039281 @default.
- W4285303928 hasRelatedWork W1694797282 @default.