Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285304232> ?p ?o ?g. }
- W4285304232 endingPage "949" @default.
- W4285304232 startingPage "936" @default.
- W4285304232 abstract "This paper considers a stochastic parallel machine scheduling problem in a just-in-time manufacturing context, in which its processing time can be described by a gamma or log-normal distribution. In order to obtain a high-performance schedule in a reasonable time, this work proposes a two-stage genetic algorithm with optimal computing budget allocation (OCBA) and improved Monte-Carlo Policy Evaluation (MCPE). In it, a genetic algorithm is selected as a main optimizer. An OCBA-based approach is developed to improve search efficiency, which is designed for two scenarios in a just-in-time manufacturing context. Different from most prior OCBA studies, this work considers that the stochastic processing time of jobs does not obey normal distribution. It extends the application area of OCBA by laying a theoretical foundation. A parameter control scheme based on MCPE is proposed, which aims to balance the global and local search in GA. To further enhance the efficiency and effectiveness of the proposed method, a two-stage framework is constructed. In the first stage, the performance is estimated roughly aiming at locating satisfactory solution regions. In the second stage, OCBA is incorporated to provide the reliable evaluation of excellent individuals. The theoretic interpretation of the proposed OCBA, and the convergence analysis results of the proposed method are presented. Various simulation results with benchmark and randomly generated cases validate that the proposed algorithm is more efficient and effective than several existing optimization algorithms. Note to Practitioners—A parallel machine scheduling problem under stochastic processing time is usually solved via meta-heuristic algorithms. However, their computational efficiency requires substantial improvement, especially for a stochastic optimization case that requires Monte Carlo sampling to estimate the actual objective function values in a precise manner. Most of them are parameter-sensitive, and choosing their proper parameters is highly challenging. For the first thorny issue, we develop an OCBA-based approach for determining the optimal numbers of simulations according to both prior knowledge and simulation results. In order to select proper control parameters of the proposed algorithm iteratively, we introduce a parameter control scheme based on MCPE. The combination of a meta-heuristic algorithm, OCBA and MCPE makes it possible to find high-quality solutions for the concerned scheduling problems in a short time. Theoretic analysis and numerical simulation results suggest that the proposed framework is valid and efficient. Hence, it can be readily applicable to practical systems, e.g., semiconductor manufacturing." @default.
- W4285304232 created "2022-07-14" @default.
- W4285304232 creator A5026785656 @default.
- W4285304232 creator A5043725403 @default.
- W4285304232 creator A5079155612 @default.
- W4285304232 creator A5079826606 @default.
- W4285304232 creator A5080586614 @default.
- W4285304232 date "2023-04-01" @default.
- W4285304232 modified "2023-10-02" @default.
- W4285304232 title "Two-Stage Genetic Algorithm for Scheduling Stochastic Unrelated Parallel Machines in a Just-in-Time Manufacturing Context" @default.
- W4285304232 cites W1491412371 @default.
- W4285304232 cites W1536615069 @default.
- W4285304232 cites W2007240797 @default.
- W4285304232 cites W2007965367 @default.
- W4285304232 cites W2015294321 @default.
- W4285304232 cites W2032952036 @default.
- W4285304232 cites W2042928785 @default.
- W4285304232 cites W2056462584 @default.
- W4285304232 cites W2095562251 @default.
- W4285304232 cites W2100832189 @default.
- W4285304232 cites W2154929945 @default.
- W4285304232 cites W2173885068 @default.
- W4285304232 cites W2327828747 @default.
- W4285304232 cites W2342532782 @default.
- W4285304232 cites W2343767601 @default.
- W4285304232 cites W2344852273 @default.
- W4285304232 cites W2507510427 @default.
- W4285304232 cites W2555999855 @default.
- W4285304232 cites W2597321818 @default.
- W4285304232 cites W2605359652 @default.
- W4285304232 cites W2792541399 @default.
- W4285304232 cites W2802720320 @default.
- W4285304232 cites W2892315936 @default.
- W4285304232 cites W2899793152 @default.
- W4285304232 cites W2901144993 @default.
- W4285304232 cites W2939395981 @default.
- W4285304232 cites W2942372150 @default.
- W4285304232 cites W2951307174 @default.
- W4285304232 cites W3013163434 @default.
- W4285304232 cites W3016450932 @default.
- W4285304232 cites W3032293620 @default.
- W4285304232 cites W3033555278 @default.
- W4285304232 cites W3033703165 @default.
- W4285304232 cites W3115742705 @default.
- W4285304232 cites W3119363261 @default.
- W4285304232 cites W3130425349 @default.
- W4285304232 cites W3186589641 @default.
- W4285304232 cites W41554520 @default.
- W4285304232 cites W4205825338 @default.
- W4285304232 cites W4237029372 @default.
- W4285304232 cites W4300553073 @default.
- W4285304232 doi "https://doi.org/10.1109/tase.2022.3178126" @default.
- W4285304232 hasPublicationYear "2023" @default.
- W4285304232 type Work @default.
- W4285304232 citedByCount "7" @default.
- W4285304232 countsByYear W42853042322022 @default.
- W4285304232 countsByYear W42853042322023 @default.
- W4285304232 crossrefType "journal-article" @default.
- W4285304232 hasAuthorship W4285304232A5026785656 @default.
- W4285304232 hasAuthorship W4285304232A5043725403 @default.
- W4285304232 hasAuthorship W4285304232A5079155612 @default.
- W4285304232 hasAuthorship W4285304232A5079826606 @default.
- W4285304232 hasAuthorship W4285304232A5080586614 @default.
- W4285304232 hasConcept C111919701 @default.
- W4285304232 hasConcept C11413529 @default.
- W4285304232 hasConcept C119857082 @default.
- W4285304232 hasConcept C126255220 @default.
- W4285304232 hasConcept C146357865 @default.
- W4285304232 hasConcept C149635348 @default.
- W4285304232 hasConcept C151730666 @default.
- W4285304232 hasConcept C173608175 @default.
- W4285304232 hasConcept C206729178 @default.
- W4285304232 hasConcept C2779343474 @default.
- W4285304232 hasConcept C3019208289 @default.
- W4285304232 hasConcept C33923547 @default.
- W4285304232 hasConcept C41008148 @default.
- W4285304232 hasConcept C55416958 @default.
- W4285304232 hasConcept C68387754 @default.
- W4285304232 hasConcept C74172769 @default.
- W4285304232 hasConcept C86803240 @default.
- W4285304232 hasConcept C8880873 @default.
- W4285304232 hasConceptScore W4285304232C111919701 @default.
- W4285304232 hasConceptScore W4285304232C11413529 @default.
- W4285304232 hasConceptScore W4285304232C119857082 @default.
- W4285304232 hasConceptScore W4285304232C126255220 @default.
- W4285304232 hasConceptScore W4285304232C146357865 @default.
- W4285304232 hasConceptScore W4285304232C149635348 @default.
- W4285304232 hasConceptScore W4285304232C151730666 @default.
- W4285304232 hasConceptScore W4285304232C173608175 @default.
- W4285304232 hasConceptScore W4285304232C206729178 @default.
- W4285304232 hasConceptScore W4285304232C2779343474 @default.
- W4285304232 hasConceptScore W4285304232C3019208289 @default.
- W4285304232 hasConceptScore W4285304232C33923547 @default.
- W4285304232 hasConceptScore W4285304232C41008148 @default.
- W4285304232 hasConceptScore W4285304232C55416958 @default.
- W4285304232 hasConceptScore W4285304232C68387754 @default.
- W4285304232 hasConceptScore W4285304232C74172769 @default.
- W4285304232 hasConceptScore W4285304232C86803240 @default.