Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285305237> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W4285305237 endingPage "20122" @default.
- W4285305237 startingPage "20110" @default.
- W4285305237 abstract "Modern complexities associated with an arterial traffic makes existing safety prediction methods insufficient to meet desired standards required by recent developmental needs. This paper proposes an enhanced active safety prediction method based on big-data approach and Stacked AutoEncoder-Gated Recurrent Unit. Firstly, the big-data technology is used to construct a dynamic identification model to recognize real-time operation state and risk state. Secondly, the Stacked AutoEncoder-Gated Recurrent Unit is used to predict a level of safety based on associated recognition results. This paper uses data from working days of Sunset Boulevard, California, from January <inline-formula xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink> <tex-math notation=LaTeX>$1^{mathrm{st}}$ </tex-math></inline-formula> , 2020, to February <inline-formula xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink> <tex-math notation=LaTeX>$28^{mathrm{th}}$ </tex-math></inline-formula> , 2020. The results of analysis show that the accuracy of the proposed dynamic recognition model reaches 98.92%, which is better than existing models such as random forest, K-nearest neighbor, and naïve Bayes models. In addition, it is found that the Stacked AutoEncoder-Gated Recurrent Unit can achieve a prediction accuracy of 95.157% and has significant advantages in terms of efficiency. The proposed methods will provide feasible solutions for actively monitoring safety levels." @default.
- W4285305237 created "2022-07-14" @default.
- W4285305237 creator A5009847434 @default.
- W4285305237 creator A5041579524 @default.
- W4285305237 creator A5043011100 @default.
- W4285305237 creator A5058026132 @default.
- W4285305237 creator A5067803203 @default.
- W4285305237 creator A5077525450 @default.
- W4285305237 creator A5077763192 @default.
- W4285305237 creator A5079954734 @default.
- W4285305237 date "2022-11-01" @default.
- W4285305237 modified "2023-10-17" @default.
- W4285305237 title "Development of a Safety Prediction Method for Arterial Roads Based on Big-Data Technology and Stacked AutoEncoder-Gated Recurrent Unit" @default.
- W4285305237 cites W1580217170 @default.
- W4285305237 cites W1999245516 @default.
- W4285305237 cites W2031896749 @default.
- W4285305237 cites W2070463402 @default.
- W4285305237 cites W2149866111 @default.
- W4285305237 cites W2161231437 @default.
- W4285305237 cites W2183679353 @default.
- W4285305237 cites W2573587735 @default.
- W4285305237 cites W2758602187 @default.
- W4285305237 cites W2761761096 @default.
- W4285305237 cites W2785215721 @default.
- W4285305237 cites W2800123561 @default.
- W4285305237 cites W2902008947 @default.
- W4285305237 cites W2974087501 @default.
- W4285305237 cites W2999863666 @default.
- W4285305237 cites W3041279471 @default.
- W4285305237 cites W3095178077 @default.
- W4285305237 doi "https://doi.org/10.1109/tits.2022.3172480" @default.
- W4285305237 hasPublicationYear "2022" @default.
- W4285305237 type Work @default.
- W4285305237 citedByCount "1" @default.
- W4285305237 countsByYear W42853052372023 @default.
- W4285305237 crossrefType "journal-article" @default.
- W4285305237 hasAuthorship W4285305237A5009847434 @default.
- W4285305237 hasAuthorship W4285305237A5041579524 @default.
- W4285305237 hasAuthorship W4285305237A5043011100 @default.
- W4285305237 hasAuthorship W4285305237A5058026132 @default.
- W4285305237 hasAuthorship W4285305237A5067803203 @default.
- W4285305237 hasAuthorship W4285305237A5077525450 @default.
- W4285305237 hasAuthorship W4285305237A5077763192 @default.
- W4285305237 hasAuthorship W4285305237A5079954734 @default.
- W4285305237 hasConcept C101738243 @default.
- W4285305237 hasConcept C107673813 @default.
- W4285305237 hasConcept C108583219 @default.
- W4285305237 hasConcept C119857082 @default.
- W4285305237 hasConcept C124101348 @default.
- W4285305237 hasConcept C153180895 @default.
- W4285305237 hasConcept C154945302 @default.
- W4285305237 hasConcept C169258074 @default.
- W4285305237 hasConcept C207201462 @default.
- W4285305237 hasConcept C33923547 @default.
- W4285305237 hasConcept C41008148 @default.
- W4285305237 hasConcept C45357846 @default.
- W4285305237 hasConcept C75684735 @default.
- W4285305237 hasConcept C94375191 @default.
- W4285305237 hasConceptScore W4285305237C101738243 @default.
- W4285305237 hasConceptScore W4285305237C107673813 @default.
- W4285305237 hasConceptScore W4285305237C108583219 @default.
- W4285305237 hasConceptScore W4285305237C119857082 @default.
- W4285305237 hasConceptScore W4285305237C124101348 @default.
- W4285305237 hasConceptScore W4285305237C153180895 @default.
- W4285305237 hasConceptScore W4285305237C154945302 @default.
- W4285305237 hasConceptScore W4285305237C169258074 @default.
- W4285305237 hasConceptScore W4285305237C207201462 @default.
- W4285305237 hasConceptScore W4285305237C33923547 @default.
- W4285305237 hasConceptScore W4285305237C41008148 @default.
- W4285305237 hasConceptScore W4285305237C45357846 @default.
- W4285305237 hasConceptScore W4285305237C75684735 @default.
- W4285305237 hasConceptScore W4285305237C94375191 @default.
- W4285305237 hasFunder F4320321001 @default.
- W4285305237 hasFunder F4320322843 @default.
- W4285305237 hasFunder F4320322924 @default.
- W4285305237 hasFunder F4320330206 @default.
- W4285305237 hasFunder F4320335777 @default.
- W4285305237 hasIssue "11" @default.
- W4285305237 hasLocation W42853052371 @default.
- W4285305237 hasOpenAccess W4285305237 @default.
- W4285305237 hasPrimaryLocation W42853052371 @default.
- W4285305237 hasRelatedWork W2669956259 @default.
- W4285305237 hasRelatedWork W2939353110 @default.
- W4285305237 hasRelatedWork W2968586400 @default.
- W4285305237 hasRelatedWork W2998168123 @default.
- W4285305237 hasRelatedWork W3014300295 @default.
- W4285305237 hasRelatedWork W3211546796 @default.
- W4285305237 hasRelatedWork W4223564025 @default.
- W4285305237 hasRelatedWork W4281616679 @default.
- W4285305237 hasRelatedWork W4287995534 @default.
- W4285305237 hasRelatedWork W4384300587 @default.
- W4285305237 hasVolume "23" @default.
- W4285305237 isParatext "false" @default.
- W4285305237 isRetracted "false" @default.
- W4285305237 workType "article" @default.