Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285306522> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W4285306522 endingPage "6813" @default.
- W4285306522 startingPage "6804" @default.
- W4285306522 abstract "Differentiable neural architecture search (DARTS), as a gradient-guided search method, greatly reduces the cost of computation and speeds up the search. In DARTS, the architecture parameters are introduced to the candidate operations, but the parameters of some weight-equipped operations may not be trained well in the initial stage, which causes unfair competition between candidate operations. The weight-free operations appear in large numbers which results in the phenomenon of performance crash. Besides, a lot of memory will be occupied during training supernet which causes the memory utilization to be low. In this paper, a partial channel connection based on channel attention for differentiable neural architecture search (ADARTS) is proposed. Some channels with higher weights are selected through the attention mechanism and sent into the operation space while the other channels are directly contacted with the processed channels. Selecting a few channels with higher attention weights can better transmit important feature information into the search space and greatly improve search efficiency and memory utilization. The instability of network structure caused by random selection can also be avoided. The experimental results show that ADARTS achieved 2.46% and 17.06% classification error rates on CIFAR-10 and CIFAR-100, respectively. ADARTS can effectively solve the problem that too many skip connections appear in the search process and obtain network structures with better performance." @default.
- W4285306522 created "2022-07-14" @default.
- W4285306522 creator A5012475436 @default.
- W4285306522 creator A5019178730 @default.
- W4285306522 date "2023-05-01" @default.
- W4285306522 modified "2023-10-18" @default.
- W4285306522 title "Partial Connection Based on Channel Attention for Differentiable Neural Architecture Search" @default.
- W4285306522 cites W2101905272 @default.
- W4285306522 cites W2194775991 @default.
- W4285306522 cites W2774368367 @default.
- W4285306522 cites W2884585870 @default.
- W4285306522 cites W2953308748 @default.
- W4285306522 cites W2960010704 @default.
- W4285306522 cites W2963163009 @default.
- W4285306522 cites W2963446712 @default.
- W4285306522 cites W2963946985 @default.
- W4285306522 cites W2964081807 @default.
- W4285306522 cites W2965658867 @default.
- W4285306522 cites W2981748264 @default.
- W4285306522 cites W3004197160 @default.
- W4285306522 cites W3034357629 @default.
- W4285306522 cites W3044162788 @default.
- W4285306522 cites W3094390838 @default.
- W4285306522 cites W3107893198 @default.
- W4285306522 cites W3140377724 @default.
- W4285306522 cites W3161934206 @default.
- W4285306522 cites W3215395840 @default.
- W4285306522 cites W4205484788 @default.
- W4285306522 cites W4255158661 @default.
- W4285306522 doi "https://doi.org/10.1109/tii.2022.3184700" @default.
- W4285306522 hasPublicationYear "2023" @default.
- W4285306522 type Work @default.
- W4285306522 citedByCount "9" @default.
- W4285306522 countsByYear W42853065222023 @default.
- W4285306522 crossrefType "journal-article" @default.
- W4285306522 hasAuthorship W4285306522A5012475436 @default.
- W4285306522 hasAuthorship W4285306522A5019178730 @default.
- W4285306522 hasBestOaLocation W42853065222 @default.
- W4285306522 hasConcept C113775141 @default.
- W4285306522 hasConcept C11413529 @default.
- W4285306522 hasConcept C126661757 @default.
- W4285306522 hasConcept C127162648 @default.
- W4285306522 hasConcept C134306372 @default.
- W4285306522 hasConcept C154945302 @default.
- W4285306522 hasConcept C162324750 @default.
- W4285306522 hasConcept C175444787 @default.
- W4285306522 hasConcept C202615002 @default.
- W4285306522 hasConcept C21782646 @default.
- W4285306522 hasConcept C31258907 @default.
- W4285306522 hasConcept C33923547 @default.
- W4285306522 hasConcept C41008148 @default.
- W4285306522 hasConcept C50644808 @default.
- W4285306522 hasConceptScore W4285306522C113775141 @default.
- W4285306522 hasConceptScore W4285306522C11413529 @default.
- W4285306522 hasConceptScore W4285306522C126661757 @default.
- W4285306522 hasConceptScore W4285306522C127162648 @default.
- W4285306522 hasConceptScore W4285306522C134306372 @default.
- W4285306522 hasConceptScore W4285306522C154945302 @default.
- W4285306522 hasConceptScore W4285306522C162324750 @default.
- W4285306522 hasConceptScore W4285306522C175444787 @default.
- W4285306522 hasConceptScore W4285306522C202615002 @default.
- W4285306522 hasConceptScore W4285306522C21782646 @default.
- W4285306522 hasConceptScore W4285306522C31258907 @default.
- W4285306522 hasConceptScore W4285306522C33923547 @default.
- W4285306522 hasConceptScore W4285306522C41008148 @default.
- W4285306522 hasConceptScore W4285306522C50644808 @default.
- W4285306522 hasFunder F4320321001 @default.
- W4285306522 hasFunder F4320322769 @default.
- W4285306522 hasIssue "5" @default.
- W4285306522 hasLocation W42853065221 @default.
- W4285306522 hasLocation W42853065222 @default.
- W4285306522 hasLocation W42853065223 @default.
- W4285306522 hasOpenAccess W4285306522 @default.
- W4285306522 hasPrimaryLocation W42853065221 @default.
- W4285306522 hasRelatedWork W2287128301 @default.
- W4285306522 hasRelatedWork W2415530497 @default.
- W4285306522 hasRelatedWork W2616468102 @default.
- W4285306522 hasRelatedWork W2790063886 @default.
- W4285306522 hasRelatedWork W2966604978 @default.
- W4285306522 hasRelatedWork W3022393726 @default.
- W4285306522 hasRelatedWork W3033161802 @default.
- W4285306522 hasRelatedWork W4232954517 @default.
- W4285306522 hasRelatedWork W4295681755 @default.
- W4285306522 hasRelatedWork W3140792579 @default.
- W4285306522 hasVolume "19" @default.
- W4285306522 isParatext "false" @default.
- W4285306522 isRetracted "false" @default.
- W4285306522 workType "article" @default.