Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285306844> ?p ?o ?g. }
- W4285306844 endingPage "57093" @default.
- W4285306844 startingPage "57080" @default.
- W4285306844 abstract "This paper presents robust positioning methods that use range measurements to estimate location parameters. The existing maximum correntropy criterion-based localization algorithm uses only the l2 norm minimization. Therefore, the localization performance may not be satisfying because the l2 norm minimization is vulnerable to the large error. Therefore, we propose the convex combination of l1 and l2 norm because the l1 norm minimization is effective in the large noise condition. The mixed-norm maximum Versoria criterion-based unscented Kalman filter, mixed-norm least lncosh unscented Kalman filter, mixed-norm maximum Versoria criterion iterative reweighted least-squares, mixed-norm least lncosh iterative reweighted least squares and closed-form localization approaches are proposed for mixed line-of-sight/non-line-of-sight environments. The proposed mixed-norm unscented Kalman filter-based algorithms are more superior to the other methods as the line-of-sight noise level increases by the use of the convex combination of l1 norm and l2 norm. The iterative reweighted least sqaures-based methods employ a weight matrix. The closed-form weighted least squares algorithm has an advantage that its computational complexity is lower than that of other methods. Simulation and experiments illustrate the localization accuracies of the proposed unscented Kalman filter-based methods are found to be superior to those of the other algorithms under large noise level conditions." @default.
- W4285306844 created "2022-07-14" @default.
- W4285306844 creator A5002418613 @default.
- W4285306844 creator A5023394161 @default.
- W4285306844 date "2022-01-01" @default.
- W4285306844 modified "2023-09-26" @default.
- W4285306844 title "Robust Localization based on Mixed-Norm Minimization Criterion" @default.
- W4285306844 cites W1497886808 @default.
- W4285306844 cites W1976602909 @default.
- W4285306844 cites W1976867558 @default.
- W4285306844 cites W2018152254 @default.
- W4285306844 cites W2035300031 @default.
- W4285306844 cites W2035539843 @default.
- W4285306844 cites W2075403247 @default.
- W4285306844 cites W2078796775 @default.
- W4285306844 cites W2104264645 @default.
- W4285306844 cites W2115407547 @default.
- W4285306844 cites W2116598146 @default.
- W4285306844 cites W2120350100 @default.
- W4285306844 cites W2123487311 @default.
- W4285306844 cites W2123914993 @default.
- W4285306844 cites W2127805491 @default.
- W4285306844 cites W2135401627 @default.
- W4285306844 cites W2141218268 @default.
- W4285306844 cites W2142471115 @default.
- W4285306844 cites W2148347826 @default.
- W4285306844 cites W2150151472 @default.
- W4285306844 cites W2150470808 @default.
- W4285306844 cites W2150952698 @default.
- W4285306844 cites W2152699771 @default.
- W4285306844 cites W2165077360 @default.
- W4285306844 cites W2196236952 @default.
- W4285306844 cites W2296143655 @default.
- W4285306844 cites W2498631646 @default.
- W4285306844 cites W2511507617 @default.
- W4285306844 cites W2523327093 @default.
- W4285306844 cites W2575097171 @default.
- W4285306844 cites W2588195252 @default.
- W4285306844 cites W2752155936 @default.
- W4285306844 cites W2754132388 @default.
- W4285306844 cites W2770746583 @default.
- W4285306844 cites W2785359964 @default.
- W4285306844 cites W2793043725 @default.
- W4285306844 cites W2918476142 @default.
- W4285306844 cites W2944846513 @default.
- W4285306844 cites W2963134661 @default.
- W4285306844 cites W2981737415 @default.
- W4285306844 cites W3026934400 @default.
- W4285306844 cites W3033741114 @default.
- W4285306844 cites W3044262859 @default.
- W4285306844 cites W3102029672 @default.
- W4285306844 cites W3112129857 @default.
- W4285306844 cites W3165205670 @default.
- W4285306844 cites W3170148879 @default.
- W4285306844 cites W3197335206 @default.
- W4285306844 cites W3198544099 @default.
- W4285306844 cites W4200575151 @default.
- W4285306844 cites W4205806204 @default.
- W4285306844 cites W4210330893 @default.
- W4285306844 cites W4211257454 @default.
- W4285306844 cites W4212785347 @default.
- W4285306844 cites W4214890088 @default.
- W4285306844 cites W4255230573 @default.
- W4285306844 doi "https://doi.org/10.1109/access.2022.3177838" @default.
- W4285306844 hasPublicationYear "2022" @default.
- W4285306844 type Work @default.
- W4285306844 citedByCount "0" @default.
- W4285306844 crossrefType "journal-article" @default.
- W4285306844 hasAuthorship W4285306844A5002418613 @default.
- W4285306844 hasAuthorship W4285306844A5023394161 @default.
- W4285306844 hasBestOaLocation W42853068441 @default.
- W4285306844 hasConcept C105795698 @default.
- W4285306844 hasConcept C112680207 @default.
- W4285306844 hasConcept C11413529 @default.
- W4285306844 hasConcept C121332964 @default.
- W4285306844 hasConcept C126090379 @default.
- W4285306844 hasConcept C126255220 @default.
- W4285306844 hasConcept C147764199 @default.
- W4285306844 hasConcept C157286648 @default.
- W4285306844 hasConcept C157972887 @default.
- W4285306844 hasConcept C158693339 @default.
- W4285306844 hasConcept C167928553 @default.
- W4285306844 hasConcept C17744445 @default.
- W4285306844 hasConcept C191795146 @default.
- W4285306844 hasConcept C199539241 @default.
- W4285306844 hasConcept C2524010 @default.
- W4285306844 hasConcept C33923547 @default.
- W4285306844 hasConcept C41008148 @default.
- W4285306844 hasConcept C45923927 @default.
- W4285306844 hasConcept C62520636 @default.
- W4285306844 hasConcept C92207270 @default.
- W4285306844 hasConceptScore W4285306844C105795698 @default.
- W4285306844 hasConceptScore W4285306844C112680207 @default.
- W4285306844 hasConceptScore W4285306844C11413529 @default.
- W4285306844 hasConceptScore W4285306844C121332964 @default.
- W4285306844 hasConceptScore W4285306844C126090379 @default.
- W4285306844 hasConceptScore W4285306844C126255220 @default.
- W4285306844 hasConceptScore W4285306844C147764199 @default.