Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285307145> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W4285307145 endingPage "528" @default.
- W4285307145 startingPage "517" @default.
- W4285307145 abstract "Abstract Let <m:math xmlns:m=http://www.w3.org/1998/Math/MathML> <m:mi class=MJX-tex-caligraphic mathvariant=script>A</m:mi> </m:math> {mathcal{A}} be a <m:math xmlns:m=http://www.w3.org/1998/Math/MathML> <m:mo>∗</m:mo> </m:math> ast -algebra, <m:math xmlns:m=http://www.w3.org/1998/Math/MathML> <m:mi class=MJX-tex-caligraphic mathvariant=script>ℳ</m:mi> </m:math> {mathcal{ {mathcal M} }} be a <m:math xmlns:m=http://www.w3.org/1998/Math/MathML> <m:mo>∗</m:mo> </m:math> ast - <m:math xmlns:m=http://www.w3.org/1998/Math/MathML> <m:mi class=MJX-tex-caligraphic mathvariant=script>A</m:mi> </m:math> {mathcal{A}} -bimodule, and <m:math xmlns:m=http://www.w3.org/1998/Math/MathML> <m:mi>δ</m:mi> </m:math> delta be a linear mapping from <m:math xmlns:m=http://www.w3.org/1998/Math/MathML> <m:mi class=MJX-tex-caligraphic mathvariant=script>A</m:mi> </m:math> {mathcal{A}} into <m:math xmlns:m=http://www.w3.org/1998/Math/MathML> <m:mi class=MJX-tex-caligraphic mathvariant=script>ℳ</m:mi> </m:math> {mathcal{ {mathcal M} }} . <m:math xmlns:m=http://www.w3.org/1998/Math/MathML> <m:mi>δ</m:mi> </m:math> delta is called a <m:math xmlns:m=http://www.w3.org/1998/Math/MathML> <m:mo>∗</m:mo> </m:math> ast - derivation if <m:math xmlns:m=http://www.w3.org/1998/Math/MathML> <m:mi>δ</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>A</m:mi> <m:mi>B</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>=</m:mo> <m:mi>A</m:mi> <m:mi>δ</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>B</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>+</m:mo> <m:mi>δ</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>A</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mi>B</m:mi> </m:math> delta left(AB)=Adelta left(B)+delta left(A)B and <m:math xmlns:m=http://www.w3.org/1998/Math/MathML> <m:mi>δ</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:msup> <m:mrow> <m:mi>A</m:mi> </m:mrow> <m:mrow> <m:mo>∗</m:mo> </m:mrow> </m:msup> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>=</m:mo> <m:mi>δ</m:mi> <m:msup> <m:mrow> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>A</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> <m:mrow> <m:mo>∗</m:mo> </m:mrow> </m:msup> </m:math> delta left({A}^{ast })=delta {left(A)}^{ast } for each <m:math xmlns:m=http://www.w3.org/1998/Math/MathML> <m:mi>A</m:mi> <m:mo>,</m:mo> <m:mi>B</m:mi> </m:math> A,B in <m:math xmlns:m=http://www.w3.org/1998/Math/MathML> <m:mi class=MJX-tex-caligraphic mathvariant=script>A</m:mi> </m:math> {mathcal{A}} . Let <m:math xmlns:m=http://www.w3.org/1998/Math/MathML> <m:mi>G</m:mi> </m:math> G be an element in <m:math xmlns:m=http://www.w3.org/1998/Math/MathML> <m:mi class=MJX-tex-caligraphic mathvariant=script>A</m:mi> </m:math> {mathcal{A}} , <m:math xmlns:m=http://www.w3.org/1998/Math/MathML> <m:mi>δ</m:mi> </m:math> delta is called a <m:math xmlns:m=http://www.w3.org/1998/Math/MathML> <m:mo>∗</m:mo> </m:math> ast - antiderivable mapping at <m:math xmlns:m=http://www.w3.org/1998/Math/MathML> <m:mi>G</m:mi> </m:math> G if <m:math xmlns:m=http://www.w3.org/1998/Math/MathML> <m:mi>A</m:mi> <m:msup> <m:mrow> <m:mi>B</m:mi> </m:mrow> <m:mrow> <m:mo>∗</m:mo> </m:mrow> </m:msup> <m:mo>=</m:mo> <m:mi>G</m:mi> <m:mo>⇒</m:mo> <m:mi>δ</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>G</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>=</m:mo> <m:msup> <m:mrow> <m:mi>B</m:mi> </m:mrow> <m:mrow> <m:mo>∗</m:mo> </m:mrow> </m:msup> <m:mi>δ</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>A</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>+</m:mo> <m:mi>δ</m:mi> <m:msup> <m:mrow> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>B</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> <m:mrow> <m:mo>∗</m:mo> </m:mrow> </m:msup> <m:mi>A</m:mi> </m:math> A{B}^{ast }=GRightarrow delta left(G)={B}^{ast }delta left(A)+delta {left(B)}^{ast }A for each <m:math xmlns:m=http://www.w3.org/1998/Math/MathML> <m:mi>A</m:mi> <m:mo>,</m:mo> <m:mi>B</m:mi> </m:math> A,B in <m:math xmlns:m=http://www.w3.org/1998/Math/MathML> <m:mi class=MJX-tex-caligraphic mathvariant=script>A</m:mi> </m:math> {mathcal{A}} . We prove that if <m:math xmlns:m=http://www.w3.org/1998/Math/MathML> <m:mi class=MJX-tex-caligraphic mathvariant=script>A</m:mi> </m:math> {mathcal{A}} is a <m:math xmlns:m=http://www.w3.org/1998/Math/MathML> <m:msup> <m:mrow> <m:mi>C</m:mi> </m:mrow> <m:mrow> <m:mo>∗</m:mo> </m:mrow> </m:msup> </m:math> {C}^{ast } -algebra, <m:math xmlns:m=http://www.w3.org/1998/Math/MathML> <m:mi class=MJX-tex-caligraphic mathvariant=script>ℳ</m:mi> </m:math> {mathcal{ {mathcal M} }} is a Banach <m:math xmlns:m=http://www.w3.org/1998/Math/MathML> <m:mo>∗</m:mo> </m:math> ast - <m:math xmlns:m=http://www.w3.org/1998/Math/MathML> <m:mi class=MJX-tex-caligraphic mathvariant=script>A</m:mi> </m:math> {mathcal{A}} -bimodule and <m:math xmlns:m=http://www.w3.org/1998/Math/MathML> <m:mi>G</m:mi> </m:math> G in <m:math xmlns:m=http://www.w3.org/1998/Math/MathML> <m:mi class=MJX-tex-caligraphic mathvariant=script>A</m:mi> </m:math> {mathcal{A}} is a separating point of <m:math xmlns:m=http://www.w3.org/1998/Math/MathML> <m:mi class=MJX-tex-caligraphic mathvariant=script>ℳ</m:mi> </m:math> {mathcal{ {mathcal M} }} with <m:math xmlns:m=http://www.w3.org/1998/Math/MathML> <m:mi>A</m:mi> <m:mi>G</m:mi> <m:mo>=</m:mo> <m:mi>G</m:mi> <m:mi>A</m:mi> </m:math> AG=GA for every <m:math xmlns:m=http://www.w3.org/1998/Math/MathML> <m:mi>A</m:mi> </m:math> A in <m:math xmlns:m=http://www.w3.org/1998/Math/MathML> <m:mi class=MJX-tex-caligraphic mathvariant=script>A</m:mi> </m:math> {mathcal{A}} , then every <m:math xmlns:m=http://www.w3.org/1998/Math/MathML> <m:mo>∗</m:mo> </m:math> ast -antiderivable mapping at <m:math xmlns:m=http://www.w3.org/1998/Math/MathML> <m:mi>G</m:mi> </m:math> G from <m:math xmlns:m=http://www.w3.org/1998/Math/MathML> <m:mi class=MJX-tex-caligraphic mathvariant=script>A</m:mi> </m:math> {mathcal{A}} into <m:math xmlns:m=http://www.w3.org/1998/Math/MathML> <m:mi class=MJX-tex-caligraphic mathvariant=script>ℳ</m:mi> </m:math> {mathcal{ {mathcal M} }} is a <m:math xmlns:m=http://www.w3.org/1998/Math/MathML> <m:mo>∗</m:mo> </m:math> ast -derivation. We also prove that if <m:math xmlns:m=http://www.w3.org/1998/Math/MathML> <m:mi class=MJX-tex-caligraphic mathvariant=script>A</m:mi> </m:math> {mathcal{A}} is a zero product determined Banach <m:math xmlns:m=http://www.w3.org/1998/Math/MathML> <m:mo>∗</m:mo> </m:math> ast -algebra with a bounded approximate identity, <m:math xmlns:m=http://www.w3.org/1998/Math/MathML> <m:mi class=MJX-tex-caligraphic mathvariant=script>ℳ</m:mi> </m:math> {mathcal{ {mathcal M} }} is an essential Banach <m:math xmlns:m=http://www.w3.org/1998/Math/MathML> <m:mo>∗</m:mo> </m:math> ast - <m:math xmlns:m=http://www.w3.org/1998/Math/MathML> <m:mi class=MJX-tex-caligraphic mathvariant=script>A</m:mi> </m:math> {mathcal{A}} -bimodule and <m:math xmlns:m=http://www.w3.org/1998/Math/MathML> <m:mi>δ</m:mi> </m:math> delta is a continuous <m:math xmlns:m=http://www.w3.org/1998/Math/MathML> <m:mo>∗</m:mo> </m:math> ast -antiderivable mapping at the point zero from <m:math xmlns:m=http://www.w3.org/1998/Math/MathML> <m:mi class=MJX-tex-caligraphic mathvariant=script>A</m:mi> </m:math> {mathcal{A}} into <m:math xmlns:m=http://www.w3.org/1998/Math/MathML> <m:mi class=MJX-tex-caligraphic mathvariant=script>ℳ</m:mi> </m:math> {mathcal{ {mathcal M} }} , then there exists a <m:math xmlns:m=http://www.w3.org/1998/Math/MathML> <m:mo>∗</m:mo> </m:math> ast -Jordan derivation <m:math xmlns:m=http://www.w3.org/1998/Math/MathML> <m:mi mathvariant=normal>Δ</m:mi> </m:math> Delta from <m:math xmlns:m=http://www.w3.org/1998/Math/MathML> <m:mi class=MJX-tex-caligraphic mathvariant=script>A</m:mi> </m:math> {mathcal{A}} into <m:math xmlns:m=http://www.w3.org/1998/Math/MathML> <m:msup> <m:mrow> <m:mi class=MJX-tex-caligraphic mathvariant=script>ℳ</m:mi> </m:mrow> <m:mrow> <m:mi>♯</m:mi> <m:mi>♯</m:mi> </m:mrow> </m:msup> </m:math> {{mathcal{ {mathcal M} }}}^{sharp sharp } and an element <m:math xmlns:m=http://www.w3.org/1998/Math/MathML> <m:mi>ξ</m:mi> </m:math> xi in <m:math xmlns:m=http://www.w3.org/1998/Math/MathML> <m:msup> <m:mrow> <m:mi class=MJX-tex-caligraphic mathvariant=script>ℳ</m:mi> </m:mrow> <m:mrow> <m:mi>♯</m:mi> <m:mi>♯</m:mi> </m:mrow> </m:msup> </m:math> {{mathcal{ {mathcal M} }}}^{sharp sharp } such that <m:math xmlns:m=http://www.w3.org/1998/Math/MathML> <m:mi>δ</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>A</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>=</m:mo> <m:mi mathvariant=normal>Δ</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>A</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>+</m:mo> <m:mi>A</m:mi> <m:mi>ξ</m:mi> </m:math> delta left(A)=Delta left(A)+Axi for every <m:math xmlns:m=http://www.w3.org/1998/Math/MathML> <m:mi>A</m:mi> </m:math> A in <m:math xmlns:m=http://www.w3.org/1998/Math/MathML> <m:mi class=MJX-tex-caligraphic mathvariant=script>A</m:mi> </m:math> {mathcal{A}} . Finally, we show that if <m:math xmlns:m=http://www.w3.org/1998/Math/MathML> <m:mi class=MJX-tex-caligraphic mathvariant=script>A</m:mi> </m:math> {mathcal{A}} is a von Neumann algebra and <m:math xmlns:m=http://www.w3.org/1998/Math/MathML> <m:mi>δ</m:mi> </m:math> delta is a <m:math xmlns:m=http://www.w3.org/1998/Math/MathML> <m:mo>∗</m:mo> </m:math> ast -antiderivable mapping (not necessary continuous) at the point zero from <m:math xmlns:m=http://www.w3.org/1998/Math/MathML> <m:mi class=MJX-tex-caligraphic mathvariant=script>A</m:mi> </m:math> {mathcal{A}} into itself, then there exists a <m:math xmlns:m=http://www.w3.org/1998/Math/MathML> <m:mo>∗</m:mo> </m:math> ast -derivation <m:math xmlns:m=http://www.w3.org/1998/Math/MathML> <m:mi mathvariant=normal>Δ</m:mi> </m:math> Delta from <m:math xmlns:m=http://www.w3.org/1998/Math/MathML> <m:mi class=MJX-tex-caligraphic mathvariant=script>A</m:mi> </m:math> {mathcal{A}} into itself such that <m:math xmlns:m=http://www.w3.org/1998/Math/MathML> <m:mi>δ</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>A</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>=</m:mo> <m:mi mathvariant=normal>Δ</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>A</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>+</m:mo> <m:mi>A</m:mi> <m:mi>δ</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>I</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> delta left(A)=Delta left(A)+Adelta left(I) for every <m:math xmlns:m=http://www.w3.org/1998/Math/MathML> <m:mi>A</m:mi> </m:math> A in <m:math xmlns:m=http://www.w3.org/1998/Math/MathML> <m:mi class=MJX-tex-caligraphic mathvariant=script>A</m:mi> </m:math> {mathcal{A}} ." @default.
- W4285307145 created "2022-07-14" @default.
- W4285307145 creator A5002240897 @default.
- W4285307145 creator A5053825928 @default.
- W4285307145 creator A5087335378 @default.
- W4285307145 date "2022-01-01" @default.
- W4285307145 modified "2023-10-01" @default.
- W4285307145 title "Characterizations of *-antiderivable mappings on operator algebras" @default.
- W4285307145 cites W1963910585 @default.
- W4285307145 cites W1981914894 @default.
- W4285307145 cites W2014154692 @default.
- W4285307145 cites W2014805355 @default.
- W4285307145 cites W2018783059 @default.
- W4285307145 cites W2022390591 @default.
- W4285307145 cites W2032193690 @default.
- W4285307145 cites W2032821234 @default.
- W4285307145 cites W2049687882 @default.
- W4285307145 cites W2053605150 @default.
- W4285307145 cites W2075715175 @default.
- W4285307145 cites W2077135809 @default.
- W4285307145 cites W2090219605 @default.
- W4285307145 cites W2095399038 @default.
- W4285307145 cites W2115575679 @default.
- W4285307145 cites W2149280988 @default.
- W4285307145 cites W2893636106 @default.
- W4285307145 cites W2941157764 @default.
- W4285307145 cites W2963191048 @default.
- W4285307145 cites W2963756687 @default.
- W4285307145 cites W2963856031 @default.
- W4285307145 cites W2963992471 @default.
- W4285307145 cites W3012472676 @default.
- W4285307145 cites W3083705132 @default.
- W4285307145 cites W4249180194 @default.
- W4285307145 doi "https://doi.org/10.1515/math-2022-0047" @default.
- W4285307145 hasPublicationYear "2022" @default.
- W4285307145 type Work @default.
- W4285307145 citedByCount "1" @default.
- W4285307145 countsByYear W42853071452023 @default.
- W4285307145 crossrefType "journal-article" @default.
- W4285307145 hasAuthorship W4285307145A5002240897 @default.
- W4285307145 hasAuthorship W4285307145A5053825928 @default.
- W4285307145 hasAuthorship W4285307145A5087335378 @default.
- W4285307145 hasBestOaLocation W42853071451 @default.
- W4285307145 hasConcept C114614502 @default.
- W4285307145 hasConcept C136119220 @default.
- W4285307145 hasConcept C154945302 @default.
- W4285307145 hasConcept C202444582 @default.
- W4285307145 hasConcept C2777212361 @default.
- W4285307145 hasConcept C33923547 @default.
- W4285307145 hasConcept C41008148 @default.
- W4285307145 hasConceptScore W4285307145C114614502 @default.
- W4285307145 hasConceptScore W4285307145C136119220 @default.
- W4285307145 hasConceptScore W4285307145C154945302 @default.
- W4285307145 hasConceptScore W4285307145C202444582 @default.
- W4285307145 hasConceptScore W4285307145C2777212361 @default.
- W4285307145 hasConceptScore W4285307145C33923547 @default.
- W4285307145 hasConceptScore W4285307145C41008148 @default.
- W4285307145 hasIssue "1" @default.
- W4285307145 hasLocation W42853071451 @default.
- W4285307145 hasLocation W42853071452 @default.
- W4285307145 hasOpenAccess W4285307145 @default.
- W4285307145 hasPrimaryLocation W42853071451 @default.
- W4285307145 hasRelatedWork W1559102282 @default.
- W4285307145 hasRelatedWork W1560139384 @default.
- W4285307145 hasRelatedWork W1978042415 @default.
- W4285307145 hasRelatedWork W1988896084 @default.
- W4285307145 hasRelatedWork W2007735529 @default.
- W4285307145 hasRelatedWork W2357111437 @default.
- W4285307145 hasRelatedWork W2977542782 @default.
- W4285307145 hasRelatedWork W3046926816 @default.
- W4285307145 hasRelatedWork W4220985904 @default.
- W4285307145 hasRelatedWork W2222154592 @default.
- W4285307145 hasVolume "20" @default.
- W4285307145 isParatext "false" @default.
- W4285307145 isRetracted "false" @default.
- W4285307145 workType "article" @default.