Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285307188> ?p ?o ?g. }
- W4285307188 endingPage "15880" @default.
- W4285307188 startingPage "15854" @default.
- W4285307188 abstract "<abstract><p>In recent years, fractional partial differential equations (FPDEs) have been viewed as powerful mathematical tools for describing ample phenomena in various scientific disciplines and have been extensively researched. In this article, the hybrid explicit group (HEG) method and the modified hybrid explicit group (MHEG) method are proposed to solve the 2D advection-diffusion problem involving fractional-order derivative of Caputo-type in the temporal direction. The considered problem models transport processes occurring in real-world complex systems. The hybrid grouping methods are developed based upon a Laplace transformation technique with a pair of explicit group finite difference approximations constructed on different grid spacings. The proposed methods are beneficial in reducing the computational burden resulting from the nonlocality of fractional-order differential operator. The theoretical investigation of stability and convergence properties is conducted by utilizing the matrix norm analysis. The improved performance of the proposed methods against a recent competitive method in terms of central processing unit (CPU) time, iterations number and computational cost is illustrated by several numerical experiments.</p></abstract>" @default.
- W4285307188 created "2022-07-14" @default.
- W4285307188 creator A5008238851 @default.
- W4285307188 creator A5024152345 @default.
- W4285307188 creator A5051649877 @default.
- W4285307188 creator A5061264847 @default.
- W4285307188 date "2022-01-01" @default.
- W4285307188 modified "2023-09-30" @default.
- W4285307188 title "Fast hybrid explicit group methods for solving 2D fractional advection-diffusion equation" @default.
- W4285307188 cites W1775551750 @default.
- W4285307188 cites W2000262918 @default.
- W4285307188 cites W2016998013 @default.
- W4285307188 cites W2042782097 @default.
- W4285307188 cites W2048326968 @default.
- W4285307188 cites W2055846437 @default.
- W4285307188 cites W2060606361 @default.
- W4285307188 cites W2073241279 @default.
- W4285307188 cites W2083378485 @default.
- W4285307188 cites W2084181523 @default.
- W4285307188 cites W2132046159 @default.
- W4285307188 cites W2142693431 @default.
- W4285307188 cites W2345022217 @default.
- W4285307188 cites W2556885152 @default.
- W4285307188 cites W2601612027 @default.
- W4285307188 cites W2741724023 @default.
- W4285307188 cites W2755121322 @default.
- W4285307188 cites W2770749360 @default.
- W4285307188 cites W2789399712 @default.
- W4285307188 cites W2793609946 @default.
- W4285307188 cites W2800901622 @default.
- W4285307188 cites W2801192398 @default.
- W4285307188 cites W2809127430 @default.
- W4285307188 cites W2944048198 @default.
- W4285307188 cites W2944090043 @default.
- W4285307188 cites W2955183992 @default.
- W4285307188 cites W2963309992 @default.
- W4285307188 cites W2972781261 @default.
- W4285307188 cites W2979682193 @default.
- W4285307188 cites W2984067768 @default.
- W4285307188 cites W2990735698 @default.
- W4285307188 cites W2991576200 @default.
- W4285307188 cites W3011425125 @default.
- W4285307188 cites W3012065227 @default.
- W4285307188 cites W3022616153 @default.
- W4285307188 cites W3033676193 @default.
- W4285307188 cites W3093753910 @default.
- W4285307188 cites W3094463545 @default.
- W4285307188 cites W3098599978 @default.
- W4285307188 cites W3102038575 @default.
- W4285307188 cites W3114144243 @default.
- W4285307188 cites W3136928437 @default.
- W4285307188 cites W3152293767 @default.
- W4285307188 cites W3169886566 @default.
- W4285307188 cites W3174539219 @default.
- W4285307188 cites W3178762723 @default.
- W4285307188 cites W3188320208 @default.
- W4285307188 cites W3188579413 @default.
- W4285307188 cites W3188810325 @default.
- W4285307188 cites W3192393143 @default.
- W4285307188 cites W3195282214 @default.
- W4285307188 cites W3205762674 @default.
- W4285307188 cites W3211180544 @default.
- W4285307188 cites W3213062299 @default.
- W4285307188 cites W3213562389 @default.
- W4285307188 cites W3215571039 @default.
- W4285307188 cites W4206104599 @default.
- W4285307188 cites W4256015224 @default.
- W4285307188 cites W770169230 @default.
- W4285307188 doi "https://doi.org/10.3934/math.2022868" @default.
- W4285307188 hasPublicationYear "2022" @default.
- W4285307188 type Work @default.
- W4285307188 citedByCount "5" @default.
- W4285307188 countsByYear W42853071882022 @default.
- W4285307188 countsByYear W42853071882023 @default.
- W4285307188 crossrefType "journal-article" @default.
- W4285307188 hasAuthorship W4285307188A5008238851 @default.
- W4285307188 hasAuthorship W4285307188A5024152345 @default.
- W4285307188 hasAuthorship W4285307188A5051649877 @default.
- W4285307188 hasAuthorship W4285307188A5061264847 @default.
- W4285307188 hasBestOaLocation W42853071881 @default.
- W4285307188 hasConcept C104317684 @default.
- W4285307188 hasConcept C112972136 @default.
- W4285307188 hasConcept C119857082 @default.
- W4285307188 hasConcept C121332964 @default.
- W4285307188 hasConcept C134306372 @default.
- W4285307188 hasConcept C154249771 @default.
- W4285307188 hasConcept C158448853 @default.
- W4285307188 hasConcept C162324750 @default.
- W4285307188 hasConcept C17020691 @default.
- W4285307188 hasConcept C178790620 @default.
- W4285307188 hasConcept C185592680 @default.
- W4285307188 hasConcept C205951836 @default.
- W4285307188 hasConcept C2777303404 @default.
- W4285307188 hasConcept C2781311116 @default.
- W4285307188 hasConcept C28826006 @default.
- W4285307188 hasConcept C33923547 @default.
- W4285307188 hasConcept C41008148 @default.
- W4285307188 hasConcept C50522688 @default.