Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285308133> ?p ?o ?g. }
- W4285308133 endingPage "6749" @default.
- W4285308133 startingPage "6742" @default.
- W4285308133 abstract "Although the navigation of robots in urban environments has achieved great performance, there is still a problem of insufficient robustness in cross-scene (ground, water surface) navigation applications. An intuitive idea is to introduce multi-modal complementary data to improve the robustness of the algorithms. Therefore, this paper presents an MMDF (multi-modal deep feature) based cross-scene place recognition framework, which consists of four kinds of modules: LiDAR module, image module, fusion module and NetVLAD module. 3D point clouds and images are input to the network firstly. The point cloud module uses PointNet to extract point cloud features. The image module uses a lightweight network to extract image features. The fusion module uses image semantic features to enhance point cloud features, and then the enhanced point cloud features are aggregated using NetVLAD to obtain the final enhanced descriptors. Extensive experiments on KITTI, Oxford RobotCar and USVInland datasets demonstrate MMDF outperforms PointNetVLAD, NetVLAD and a camera-LiDAR fused descriptor." @default.
- W4285308133 created "2022-07-14" @default.
- W4285308133 creator A5011246421 @default.
- W4285308133 creator A5017369450 @default.
- W4285308133 creator A5033103761 @default.
- W4285308133 creator A5072202953 @default.
- W4285308133 creator A5083546491 @default.
- W4285308133 date "2022-07-01" @default.
- W4285308133 modified "2023-10-02" @default.
- W4285308133 title "MMDF: Multi-Modal Deep Feature Based Place Recognition of Mobile Robots With Applications on Cross-Scene Navigation" @default.
- W4285308133 cites W2012592962 @default.
- W4285308133 cites W2014091167 @default.
- W4285308133 cites W2103924867 @default.
- W4285308133 cites W2150066425 @default.
- W4285308133 cites W2194775991 @default.
- W4285308133 cites W2555618208 @default.
- W4285308133 cites W2558027072 @default.
- W4285308133 cites W2565998037 @default.
- W4285308133 cites W2607603241 @default.
- W4285308133 cites W2910489334 @default.
- W4285308133 cites W2949708697 @default.
- W4285308133 cites W2951019013 @default.
- W4285308133 cites W2951517617 @default.
- W4285308133 cites W2963324085 @default.
- W4285308133 cites W2963400571 @default.
- W4285308133 cites W2968296999 @default.
- W4285308133 cites W2986519585 @default.
- W4285308133 cites W2997164612 @default.
- W4285308133 cites W2998254148 @default.
- W4285308133 cites W3003250797 @default.
- W4285308133 cites W3026399543 @default.
- W4285308133 cites W3035461736 @default.
- W4285308133 cites W3092168917 @default.
- W4285308133 cites W3095367607 @default.
- W4285308133 cites W3099455272 @default.
- W4285308133 cites W3099719534 @default.
- W4285308133 cites W3099727102 @default.
- W4285308133 cites W3107819843 @default.
- W4285308133 cites W3124676898 @default.
- W4285308133 cites W3126285971 @default.
- W4285308133 cites W3130463448 @default.
- W4285308133 cites W3132982513 @default.
- W4285308133 cites W3135933983 @default.
- W4285308133 cites W3173736705 @default.
- W4285308133 cites W3206049666 @default.
- W4285308133 doi "https://doi.org/10.1109/lra.2022.3176731" @default.
- W4285308133 hasPublicationYear "2022" @default.
- W4285308133 type Work @default.
- W4285308133 citedByCount "2" @default.
- W4285308133 countsByYear W42853081332023 @default.
- W4285308133 crossrefType "journal-article" @default.
- W4285308133 hasAuthorship W4285308133A5011246421 @default.
- W4285308133 hasAuthorship W4285308133A5017369450 @default.
- W4285308133 hasAuthorship W4285308133A5033103761 @default.
- W4285308133 hasAuthorship W4285308133A5072202953 @default.
- W4285308133 hasAuthorship W4285308133A5083546491 @default.
- W4285308133 hasConcept C104317684 @default.
- W4285308133 hasConcept C115961682 @default.
- W4285308133 hasConcept C131979681 @default.
- W4285308133 hasConcept C138885662 @default.
- W4285308133 hasConcept C154945302 @default.
- W4285308133 hasConcept C185592680 @default.
- W4285308133 hasConcept C188027245 @default.
- W4285308133 hasConcept C19966478 @default.
- W4285308133 hasConcept C205649164 @default.
- W4285308133 hasConcept C2776401178 @default.
- W4285308133 hasConcept C31972630 @default.
- W4285308133 hasConcept C41008148 @default.
- W4285308133 hasConcept C41895202 @default.
- W4285308133 hasConcept C51399673 @default.
- W4285308133 hasConcept C55493867 @default.
- W4285308133 hasConcept C62649853 @default.
- W4285308133 hasConcept C63479239 @default.
- W4285308133 hasConcept C69744172 @default.
- W4285308133 hasConcept C71139939 @default.
- W4285308133 hasConcept C90509273 @default.
- W4285308133 hasConceptScore W4285308133C104317684 @default.
- W4285308133 hasConceptScore W4285308133C115961682 @default.
- W4285308133 hasConceptScore W4285308133C131979681 @default.
- W4285308133 hasConceptScore W4285308133C138885662 @default.
- W4285308133 hasConceptScore W4285308133C154945302 @default.
- W4285308133 hasConceptScore W4285308133C185592680 @default.
- W4285308133 hasConceptScore W4285308133C188027245 @default.
- W4285308133 hasConceptScore W4285308133C19966478 @default.
- W4285308133 hasConceptScore W4285308133C205649164 @default.
- W4285308133 hasConceptScore W4285308133C2776401178 @default.
- W4285308133 hasConceptScore W4285308133C31972630 @default.
- W4285308133 hasConceptScore W4285308133C41008148 @default.
- W4285308133 hasConceptScore W4285308133C41895202 @default.
- W4285308133 hasConceptScore W4285308133C51399673 @default.
- W4285308133 hasConceptScore W4285308133C55493867 @default.
- W4285308133 hasConceptScore W4285308133C62649853 @default.
- W4285308133 hasConceptScore W4285308133C63479239 @default.
- W4285308133 hasConceptScore W4285308133C69744172 @default.
- W4285308133 hasConceptScore W4285308133C71139939 @default.
- W4285308133 hasConceptScore W4285308133C90509273 @default.
- W4285308133 hasFunder F4320321001 @default.
- W4285308133 hasIssue "3" @default.