Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285309417> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W4285309417 endingPage "13187" @default.
- W4285309417 startingPage "13177" @default.
- W4285309417 abstract "Deep neural networks (DNN) have recently been introduced to the radar-based fall detection system to achieve high detection accuracy. However, such systems generally suffer the limitation of increased computational complexity and thus increased power consumption. In this work, a novel multi-stage radar-based fall detection system is proposed to maintain high accuracy while keeping the power consumption at a low level. The proposed system consists of three stages. In the first stage, named event detection, a simple threshold-based method is adopted to determine whether there is motion existing or not. In the second stage, a shallow neural network called preliminary screening network (PSN) with extremely low computational complexity is proposed to determine whether such activity is fall-like or not. Finally, the last step contains a DNN with heavily computational complexity, named reconstruction-based fall detector (CRFD), which is applied to determine whether such a fall-like motion is a fall or not. By adopting the proposed multi-stage architecture, the part with the highest computation cost—the CRFD would be inactivated most time and thus can significantly reduce the complexity of the overall fall detection system. The experimental results show that compared with the conventional one-stage method, the proposed multi-stage system can not only achieve high fall detection accuracy but also has potential for deployment in a much lower power mode." @default.
- W4285309417 created "2022-07-14" @default.
- W4285309417 creator A5003104776 @default.
- W4285309417 creator A5023269739 @default.
- W4285309417 date "2022-07-01" @default.
- W4285309417 modified "2023-09-26" @default.
- W4285309417 title "Design of a Multistage Radar-Based Human Fall Detection System" @default.
- W4285309417 cites W2022102190 @default.
- W4285309417 cites W2056017117 @default.
- W4285309417 cites W2056818943 @default.
- W4285309417 cites W2082302382 @default.
- W4285309417 cites W2151660514 @default.
- W4285309417 cites W2156163116 @default.
- W4285309417 cites W2194775991 @default.
- W4285309417 cites W2313683095 @default.
- W4285309417 cites W2437887222 @default.
- W4285309417 cites W2518968691 @default.
- W4285309417 cites W2746870488 @default.
- W4285309417 cites W2789436454 @default.
- W4285309417 cites W2800017313 @default.
- W4285309417 cites W2902297716 @default.
- W4285309417 cites W2942065897 @default.
- W4285309417 cites W2953001150 @default.
- W4285309417 cites W2963049059 @default.
- W4285309417 cites W2963061824 @default.
- W4285309417 cites W2974541608 @default.
- W4285309417 cites W2979637742 @default.
- W4285309417 cites W3039610325 @default.
- W4285309417 cites W3091542279 @default.
- W4285309417 cites W3106861388 @default.
- W4285309417 cites W3113058581 @default.
- W4285309417 cites W3113920925 @default.
- W4285309417 cites W3118882785 @default.
- W4285309417 cites W3120599689 @default.
- W4285309417 cites W3129166376 @default.
- W4285309417 cites W3163374568 @default.
- W4285309417 cites W3217177863 @default.
- W4285309417 doi "https://doi.org/10.1109/jsen.2022.3177173" @default.
- W4285309417 hasPublicationYear "2022" @default.
- W4285309417 type Work @default.
- W4285309417 citedByCount "4" @default.
- W4285309417 countsByYear W42853094172023 @default.
- W4285309417 crossrefType "journal-article" @default.
- W4285309417 hasAuthorship W4285309417A5003104776 @default.
- W4285309417 hasAuthorship W4285309417A5023269739 @default.
- W4285309417 hasConcept C105339364 @default.
- W4285309417 hasConcept C111919701 @default.
- W4285309417 hasConcept C11413529 @default.
- W4285309417 hasConcept C153180895 @default.
- W4285309417 hasConcept C154945302 @default.
- W4285309417 hasConcept C179799912 @default.
- W4285309417 hasConcept C2776151529 @default.
- W4285309417 hasConcept C41008148 @default.
- W4285309417 hasConcept C50644808 @default.
- W4285309417 hasConcept C554190296 @default.
- W4285309417 hasConcept C76155785 @default.
- W4285309417 hasConcept C79403827 @default.
- W4285309417 hasConcept C94915269 @default.
- W4285309417 hasConceptScore W4285309417C105339364 @default.
- W4285309417 hasConceptScore W4285309417C111919701 @default.
- W4285309417 hasConceptScore W4285309417C11413529 @default.
- W4285309417 hasConceptScore W4285309417C153180895 @default.
- W4285309417 hasConceptScore W4285309417C154945302 @default.
- W4285309417 hasConceptScore W4285309417C179799912 @default.
- W4285309417 hasConceptScore W4285309417C2776151529 @default.
- W4285309417 hasConceptScore W4285309417C41008148 @default.
- W4285309417 hasConceptScore W4285309417C50644808 @default.
- W4285309417 hasConceptScore W4285309417C554190296 @default.
- W4285309417 hasConceptScore W4285309417C76155785 @default.
- W4285309417 hasConceptScore W4285309417C79403827 @default.
- W4285309417 hasConceptScore W4285309417C94915269 @default.
- W4285309417 hasIssue "13" @default.
- W4285309417 hasLocation W42853094171 @default.
- W4285309417 hasOpenAccess W4285309417 @default.
- W4285309417 hasPrimaryLocation W42853094171 @default.
- W4285309417 hasRelatedWork W1969481115 @default.
- W4285309417 hasRelatedWork W2021850411 @default.
- W4285309417 hasRelatedWork W2364719424 @default.
- W4285309417 hasRelatedWork W2365129690 @default.
- W4285309417 hasRelatedWork W2375642756 @default.
- W4285309417 hasRelatedWork W2386387936 @default.
- W4285309417 hasRelatedWork W4307785457 @default.
- W4285309417 hasRelatedWork W4311461247 @default.
- W4285309417 hasRelatedWork W4312263439 @default.
- W4285309417 hasRelatedWork W4377715550 @default.
- W4285309417 hasVolume "22" @default.
- W4285309417 isParatext "false" @default.
- W4285309417 isRetracted "false" @default.
- W4285309417 workType "article" @default.