Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285319753> ?p ?o ?g. }
- W4285319753 abstract "<sec> <title>BACKGROUND</title> Despite health behavioral change interventions targeting modifiable lifestyle factors underlying chronic diseases, dropouts and nonadherence of individuals have remained high. The rapid development of machine learning (ML) in recent years, alongside its ability to provide readily available personalized experience for users, holds much potential for success in health promotion and behavioral change interventions. </sec> <sec> <title>OBJECTIVE</title> The aim of this paper is to provide an overview of the existing research on ML applications and harness their potential in health promotion and behavioral change interventions. </sec> <sec> <title>METHODS</title> A scoping review was conducted based on the 5-stage framework by Arksey and O’Malley and the PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses for Scoping Reviews) guidelines. A total of 9 databases (the Cochrane Library, CINAHL, Embase, Ovid, ProQuest, PsycInfo, PubMed, Scopus, and Web of Science) were searched from inception to February 2021, without limits on the dates and types of publications. Studies were included in the review if they had incorporated ML in any health promotion or behavioral change interventions, had studied at least one group of participants, and had been published in English. Publication-related information (author, year, aim, and findings), area of health promotion, user data analyzed, type of ML used, challenges encountered, and future research were extracted from each study. </sec> <sec> <title>RESULTS</title> A total of 29 articles were included in this review. Three themes were generated, which are as follows: (1) enablers, which is the adoption of information technology for optimizing systemic operation; (2) challenges, which comprises the various hurdles and limitations presented in the articles; and (3) future directions, which explores prospective strategies in health promotion through ML. </sec> <sec> <title>CONCLUSIONS</title> The challenges pertained to not only the time- and resource-consuming nature of ML-based applications, but also the burden on users for data input and the degree of personalization. Future works may consider designs that correspondingly mitigate these challenges in areas that receive limited attention, such as smoking and mental health. </sec>" @default.
- W4285319753 created "2022-07-14" @default.
- W4285319753 creator A5030893517 @default.
- W4285319753 creator A5034280565 @default.
- W4285319753 creator A5073600525 @default.
- W4285319753 creator A5086428725 @default.
- W4285319753 creator A5088875777 @default.
- W4285319753 date "2021-12-19" @default.
- W4285319753 modified "2023-09-29" @default.
- W4285319753 title "Machine Learning in Health Promotion and Behavioral Change: Scoping Review (Preprint)" @default.
- W4285319753 cites W1523943095 @default.
- W4285319753 cites W1771486365 @default.
- W4285319753 cites W1882671252 @default.
- W4285319753 cites W1901616594 @default.
- W4285319753 cites W1987543638 @default.
- W4285319753 cites W2014020987 @default.
- W4285319753 cites W2022401732 @default.
- W4285319753 cites W2071387405 @default.
- W4285319753 cites W2075950485 @default.
- W4285319753 cites W2081501453 @default.
- W4285319753 cites W2084534703 @default.
- W4285319753 cites W2113373290 @default.
- W4285319753 cites W2116750815 @default.
- W4285319753 cites W2168630917 @default.
- W4285319753 cites W2169292637 @default.
- W4285319753 cites W2178720062 @default.
- W4285319753 cites W2227723965 @default.
- W4285319753 cites W2235686152 @default.
- W4285319753 cites W2302336355 @default.
- W4285319753 cites W2490843229 @default.
- W4285319753 cites W2749051992 @default.
- W4285319753 cites W2757977540 @default.
- W4285319753 cites W2765363580 @default.
- W4285319753 cites W277445453 @default.
- W4285319753 cites W2784499415 @default.
- W4285319753 cites W2787063801 @default.
- W4285319753 cites W2800970279 @default.
- W4285319753 cites W2803107794 @default.
- W4285319753 cites W2889992659 @default.
- W4285319753 cites W2891378911 @default.
- W4285319753 cites W2898536996 @default.
- W4285319753 cites W2912033431 @default.
- W4285319753 cites W2912581524 @default.
- W4285319753 cites W2916967665 @default.
- W4285319753 cites W2945732805 @default.
- W4285319753 cites W2973032093 @default.
- W4285319753 cites W2981577538 @default.
- W4285319753 cites W2990491951 @default.
- W4285319753 cites W3010492903 @default.
- W4285319753 cites W3014079436 @default.
- W4285319753 cites W3153945574 @default.
- W4285319753 doi "https://doi.org/10.2196/preprints.35831" @default.
- W4285319753 hasPublicationYear "2021" @default.
- W4285319753 type Work @default.
- W4285319753 citedByCount "0" @default.
- W4285319753 crossrefType "posted-content" @default.
- W4285319753 hasAuthorship W4285319753A5030893517 @default.
- W4285319753 hasAuthorship W4285319753A5034280565 @default.
- W4285319753 hasAuthorship W4285319753A5073600525 @default.
- W4285319753 hasAuthorship W4285319753A5086428725 @default.
- W4285319753 hasAuthorship W4285319753A5088875777 @default.
- W4285319753 hasBestOaLocation W42853197532 @default.
- W4285319753 hasConcept C126322002 @default.
- W4285319753 hasConcept C138816342 @default.
- W4285319753 hasConcept C14262774 @default.
- W4285319753 hasConcept C15744967 @default.
- W4285319753 hasConcept C159110408 @default.
- W4285319753 hasConcept C17744445 @default.
- W4285319753 hasConcept C185618831 @default.
- W4285319753 hasConcept C189708586 @default.
- W4285319753 hasConcept C199539241 @default.
- W4285319753 hasConcept C27415008 @default.
- W4285319753 hasConcept C2776478404 @default.
- W4285319753 hasConcept C2779473830 @default.
- W4285319753 hasConcept C2779549880 @default.
- W4285319753 hasConcept C2781145037 @default.
- W4285319753 hasConcept C509550671 @default.
- W4285319753 hasConcept C56329447 @default.
- W4285319753 hasConcept C71924100 @default.
- W4285319753 hasConcept C75630572 @default.
- W4285319753 hasConcept C77805123 @default.
- W4285319753 hasConcept C83867959 @default.
- W4285319753 hasConcept C94625758 @default.
- W4285319753 hasConcept C95190672 @default.
- W4285319753 hasConcept C98147612 @default.
- W4285319753 hasConceptScore W4285319753C126322002 @default.
- W4285319753 hasConceptScore W4285319753C138816342 @default.
- W4285319753 hasConceptScore W4285319753C14262774 @default.
- W4285319753 hasConceptScore W4285319753C15744967 @default.
- W4285319753 hasConceptScore W4285319753C159110408 @default.
- W4285319753 hasConceptScore W4285319753C17744445 @default.
- W4285319753 hasConceptScore W4285319753C185618831 @default.
- W4285319753 hasConceptScore W4285319753C189708586 @default.
- W4285319753 hasConceptScore W4285319753C199539241 @default.
- W4285319753 hasConceptScore W4285319753C27415008 @default.
- W4285319753 hasConceptScore W4285319753C2776478404 @default.
- W4285319753 hasConceptScore W4285319753C2779473830 @default.
- W4285319753 hasConceptScore W4285319753C2779549880 @default.
- W4285319753 hasConceptScore W4285319753C2781145037 @default.
- W4285319753 hasConceptScore W4285319753C509550671 @default.