Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285326067> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W4285326067 abstract "Pathologists visually examine cell morphology by observing the biopsy slides under a microscope through different magnifying factors, which is time-consuming and error-prone. In this regard, computer-aided whole slide image (WSI) analysis is necessary to help pathologists reduce time effort, and human error. With the recent advances in deep learning for computer vision, convolutional neural networks (ConvNets) have gained attention in the medical domain and have shown significant progress in whole slide image classification. Existing deep learning approaches work by feeding ConvNet with small patches extracted from WSIs. However, it is unknown how the size of the extracted patches and the magnifying factor of the WSI affect the performance of the ConvNet. Therefore, we construct several datasets by extracting patches from stomach histopathological imagery, varying the size of the patches and the magnifying factor of the WSIs. Densely Connected Convolutional Neural Network (DenseNet) is used to classify dysplasia, malignant, and benign patches. We observe the impact of the patch extraction variables using precision and recall. This study shines a light on why these factors would affect the model performance concerning data representation and provides a guideline for histopathological imagery data extraction methods." @default.
- W4285326067 created "2022-07-14" @default.
- W4285326067 creator A5048304683 @default.
- W4285326067 creator A5088156206 @default.
- W4285326067 creator A5092318444 @default.
- W4285326067 date "2021-12-01" @default.
- W4285326067 modified "2023-09-25" @default.
- W4285326067 title "Impact of Patch Extraction Variables on Histopathological Imagery Classification Using Convolution Neural Networks" @default.
- W4285326067 cites W1820655337 @default.
- W4285326067 cites W1965451568 @default.
- W4285326067 cites W2056499382 @default.
- W4285326067 cites W2097117768 @default.
- W4285326067 cites W2132162500 @default.
- W4285326067 cites W2160738726 @default.
- W4285326067 cites W2194775991 @default.
- W4285326067 cites W2302302587 @default.
- W4285326067 cites W2344480160 @default.
- W4285326067 cites W2470965540 @default.
- W4285326067 cites W2504150216 @default.
- W4285326067 cites W2554892747 @default.
- W4285326067 cites W2568799344 @default.
- W4285326067 cites W2594258169 @default.
- W4285326067 cites W2620578070 @default.
- W4285326067 cites W2624699030 @default.
- W4285326067 cites W2734785239 @default.
- W4285326067 cites W2751274270 @default.
- W4285326067 cites W2751723768 @default.
- W4285326067 cites W2772723798 @default.
- W4285326067 cites W2897068067 @default.
- W4285326067 cites W2919115771 @default.
- W4285326067 cites W2963108767 @default.
- W4285326067 doi "https://doi.org/10.1109/csci54926.2021.00246" @default.
- W4285326067 hasPublicationYear "2021" @default.
- W4285326067 type Work @default.
- W4285326067 citedByCount "1" @default.
- W4285326067 countsByYear W42853260672023 @default.
- W4285326067 crossrefType "proceedings-article" @default.
- W4285326067 hasAuthorship W4285326067A5048304683 @default.
- W4285326067 hasAuthorship W4285326067A5088156206 @default.
- W4285326067 hasAuthorship W4285326067A5092318444 @default.
- W4285326067 hasConcept C108583219 @default.
- W4285326067 hasConcept C115961682 @default.
- W4285326067 hasConcept C153180895 @default.
- W4285326067 hasConcept C154945302 @default.
- W4285326067 hasConcept C31972630 @default.
- W4285326067 hasConcept C41008148 @default.
- W4285326067 hasConcept C45347329 @default.
- W4285326067 hasConcept C50644808 @default.
- W4285326067 hasConcept C52622490 @default.
- W4285326067 hasConcept C75294576 @default.
- W4285326067 hasConcept C81363708 @default.
- W4285326067 hasConceptScore W4285326067C108583219 @default.
- W4285326067 hasConceptScore W4285326067C115961682 @default.
- W4285326067 hasConceptScore W4285326067C153180895 @default.
- W4285326067 hasConceptScore W4285326067C154945302 @default.
- W4285326067 hasConceptScore W4285326067C31972630 @default.
- W4285326067 hasConceptScore W4285326067C41008148 @default.
- W4285326067 hasConceptScore W4285326067C45347329 @default.
- W4285326067 hasConceptScore W4285326067C50644808 @default.
- W4285326067 hasConceptScore W4285326067C52622490 @default.
- W4285326067 hasConceptScore W4285326067C75294576 @default.
- W4285326067 hasConceptScore W4285326067C81363708 @default.
- W4285326067 hasLocation W42853260671 @default.
- W4285326067 hasOpenAccess W4285326067 @default.
- W4285326067 hasPrimaryLocation W42853260671 @default.
- W4285326067 hasRelatedWork W2732542196 @default.
- W4285326067 hasRelatedWork W2767708349 @default.
- W4285326067 hasRelatedWork W2774265021 @default.
- W4285326067 hasRelatedWork W2800691917 @default.
- W4285326067 hasRelatedWork W2940977206 @default.
- W4285326067 hasRelatedWork W2969680539 @default.
- W4285326067 hasRelatedWork W2998169797 @default.
- W4285326067 hasRelatedWork W3011074480 @default.
- W4285326067 hasRelatedWork W3156786002 @default.
- W4285326067 hasRelatedWork W564581980 @default.
- W4285326067 isParatext "false" @default.
- W4285326067 isRetracted "false" @default.
- W4285326067 workType "article" @default.