Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285341773> ?p ?o ?g. }
- W4285341773 endingPage "361" @default.
- W4285341773 startingPage "333" @default.
- W4285341773 abstract "Recent experimental advances in frequency-domain spectroscopy have resulted in large increases in the quantity, quality, relative intensities, and inter-species correlated rotation-vibration population distributions. When a spectrum is recorded without scanning a laser or a monochromator, it can yield meaningful, information-rich relative intensities. We discuss a series of examples in this paper. This series culminates in two examples of multiplexed spectra: Chirped Pulse millimeter-wave Spectroscopy and Velocity Map Imaging. A few-μs duration chirped pulse of millimeter-wave radiation is generated electronically without appreciable pulse-to-pulse variation of either the pulse itself or the system to which it is applied. A velocity map image is collected event-by-event on a 2-dimensional detector, without significant variation of the laser frequencies that generate the detected species. The availability of new classes of experimental data have led to the asking and answering of previously unimaginable questions about the structure and dynamics of small molecules at high levels of internal excitation, especially in explicitly targeted regions of state-space. Spectra are assigned based on observation or reconstruction of simple patterns. These patterns are broken by spectroscopic perturbations. The broken patterns can be collected and arranged into a higher level of pattern: a pattern of broken patterns. These perturbations can be interactions of an electronic “bright state” with multiple vibrational levels of several electronic excited “dark” states or, for the 3N-6 vibrational normal modes of an N-atom polyatomic molecule, vibrational polyads. Polyads are much more robust than vibrational normal modes because, as excitation energy increases, the values of the matrix elements and the dimension of the H eff polyad matrices depend in a simple, a priori known manner on the polyad quantum numbers. At high excitation energy, the energy and structure of transition states for isomerization become encoded in a broken pattern of broken patterns, for example, the transition state for trans-cis isomerization in the S1 state of acetylene. Information about photolysis transition states comes from the vibrational population distribution of photofragments and from inter-species rotation-vibration correlated population distributions. Vibrational satellites on the J=0-1 rotational transition of HCN/HNC in the Chirped-Pulse millimeter-Wave (CPmmW) spectrum reveal the mechanism(s) of 193 nm photolysis of Vinyl Cyanide. Correlated population distributions of CO and H2, observed by Velocity Map Imaging (VMI) reveal the roaming mechanism for dissociation of H2CO via excitation of selected predissociated levels." @default.
- W4285341773 created "2022-07-14" @default.
- W4285341773 creator A5038839224 @default.
- W4285341773 creator A5078723351 @default.
- W4285341773 date "2021-10-27" @default.
- W4285341773 modified "2023-09-27" @default.
- W4285341773 title "Modern Techniques, Modern Concepts, and Molecules Doing Stuff" @default.
- W4285341773 cites W1640545778 @default.
- W4285341773 cites W1930699827 @default.
- W4285341773 cites W1964069776 @default.
- W4285341773 cites W1965308912 @default.
- W4285341773 cites W1965370810 @default.
- W4285341773 cites W1974203626 @default.
- W4285341773 cites W1975232106 @default.
- W4285341773 cites W1978364715 @default.
- W4285341773 cites W1981153132 @default.
- W4285341773 cites W1984982018 @default.
- W4285341773 cites W1988027839 @default.
- W4285341773 cites W1996337441 @default.
- W4285341773 cites W2001374126 @default.
- W4285341773 cites W2004283828 @default.
- W4285341773 cites W2006057774 @default.
- W4285341773 cites W2008301460 @default.
- W4285341773 cites W2012683273 @default.
- W4285341773 cites W2013103846 @default.
- W4285341773 cites W2022180697 @default.
- W4285341773 cites W2023480901 @default.
- W4285341773 cites W2026733730 @default.
- W4285341773 cites W2034328009 @default.
- W4285341773 cites W2043360210 @default.
- W4285341773 cites W2046002177 @default.
- W4285341773 cites W2051315162 @default.
- W4285341773 cites W2054801322 @default.
- W4285341773 cites W2064142763 @default.
- W4285341773 cites W2065710691 @default.
- W4285341773 cites W2067220244 @default.
- W4285341773 cites W2069944525 @default.
- W4285341773 cites W2078082272 @default.
- W4285341773 cites W2080420141 @default.
- W4285341773 cites W2082954546 @default.
- W4285341773 cites W2085413415 @default.
- W4285341773 cites W2091757987 @default.
- W4285341773 cites W2093041241 @default.
- W4285341773 cites W2095260255 @default.
- W4285341773 cites W2110697579 @default.
- W4285341773 cites W2153185865 @default.
- W4285341773 cites W2166603911 @default.
- W4285341773 cites W2200369217 @default.
- W4285341773 cites W2290174626 @default.
- W4285341773 cites W2318017567 @default.
- W4285341773 cites W2328785550 @default.
- W4285341773 cites W2521186718 @default.
- W4285341773 cites W2622900358 @default.
- W4285341773 cites W2763923060 @default.
- W4285341773 cites W2774338017 @default.
- W4285341773 cites W2805726733 @default.
- W4285341773 cites W2903553789 @default.
- W4285341773 cites W2995031011 @default.
- W4285341773 cites W3000558950 @default.
- W4285341773 cites W3008845732 @default.
- W4285341773 cites W3012615990 @default.
- W4285341773 cites W3047037639 @default.
- W4285341773 cites W3098463153 @default.
- W4285341773 cites W3108312952 @default.
- W4285341773 cites W3194266919 @default.
- W4285341773 cites W4233630178 @default.
- W4285341773 doi "https://doi.org/10.1021/bk-2021-1398.ch015" @default.
- W4285341773 hasPublicationYear "2021" @default.
- W4285341773 type Work @default.
- W4285341773 citedByCount "0" @default.
- W4285341773 crossrefType "book-chapter" @default.
- W4285341773 hasAuthorship W4285341773A5038839224 @default.
- W4285341773 hasAuthorship W4285341773A5078723351 @default.
- W4285341773 hasConcept C121332964 @default.
- W4285341773 hasConcept C144024400 @default.
- W4285341773 hasConcept C149923435 @default.
- W4285341773 hasConcept C181500209 @default.
- W4285341773 hasConcept C184779094 @default.
- W4285341773 hasConcept C2908647359 @default.
- W4285341773 hasConcept C32891209 @default.
- W4285341773 hasConcept C4839761 @default.
- W4285341773 hasConcept C62520636 @default.
- W4285341773 hasConceptScore W4285341773C121332964 @default.
- W4285341773 hasConceptScore W4285341773C144024400 @default.
- W4285341773 hasConceptScore W4285341773C149923435 @default.
- W4285341773 hasConceptScore W4285341773C181500209 @default.
- W4285341773 hasConceptScore W4285341773C184779094 @default.
- W4285341773 hasConceptScore W4285341773C2908647359 @default.
- W4285341773 hasConceptScore W4285341773C32891209 @default.
- W4285341773 hasConceptScore W4285341773C4839761 @default.
- W4285341773 hasConceptScore W4285341773C62520636 @default.
- W4285341773 hasLocation W42853417731 @default.
- W4285341773 hasOpenAccess W4285341773 @default.
- W4285341773 hasPrimaryLocation W42853417731 @default.
- W4285341773 hasRelatedWork W1996227499 @default.
- W4285341773 hasRelatedWork W2038832517 @default.
- W4285341773 hasRelatedWork W2044129740 @default.
- W4285341773 hasRelatedWork W2054783103 @default.