Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285357861> ?p ?o ?g. }
Showing items 1 to 51 of
51
with 100 items per page.
- W4285357861 abstract "With a growing threat of cyber-attacks, network intrusion detection remains challenging in the domain of cyberspace security. To defend against cyber-attacks on computer systems, various machine learning approaches have been applied for intrusion detection over the past few decades, such as random forest, support vector machine and long short-term memory. Although most of these approaches can provide satisfactory detection performances in terms of accuracy, recall and area under the receiver operating characteristic curve (AUC), their performances rely heavily on the training sample amount of attacks. When the type of attacks is unknown and the training sample amount is insufficient, the performances of these approaches may degenerate more or less. Therefore, based on a recently emerging approximate logic neural model (ALNM), a novel intrusion detection approach termed ALNM-IDA is proposed to overcome the issue in this paper. In the ALNM-IDA, the k-means clustering is first applied to discretize continuous features, and the maximum relevance minimum redundancy is adopted to select essential features. Then, the training dataset of normal and attack inputs is fed to the ALNM. In addition, adaptive moment estimation (Adam) is used as the training algorithm to improve the detection performance and accelerate the training phase. To validate the effectiveness of the ALNM-IDA, three benchmark intrusion detection datasets are employed in our experiments. Comparative results demonstrate that the ALNM-IDA can provide superior detection performance than other widely-used machine learning approaches in the case of insufficient training information." @default.
- W4285357861 created "2022-07-14" @default.
- W4285357861 creator A5029351601 @default.
- W4285357861 creator A5046906366 @default.
- W4285357861 creator A5066935890 @default.
- W4285357861 date "2021-10-01" @default.
- W4285357861 modified "2023-10-16" @default.
- W4285357861 title "Network Intrusion Detection by an Approximate Logic Neural Model" @default.
- W4285357861 doi "https://doi.org/10.1109/issrew53611.2021.00072" @default.
- W4285357861 hasPublicationYear "2021" @default.
- W4285357861 type Work @default.
- W4285357861 citedByCount "0" @default.
- W4285357861 crossrefType "proceedings-article" @default.
- W4285357861 hasAuthorship W4285357861A5029351601 @default.
- W4285357861 hasAuthorship W4285357861A5046906366 @default.
- W4285357861 hasAuthorship W4285357861A5066935890 @default.
- W4285357861 hasConcept C111919701 @default.
- W4285357861 hasConcept C119857082 @default.
- W4285357861 hasConcept C124101348 @default.
- W4285357861 hasConcept C152124472 @default.
- W4285357861 hasConcept C154945302 @default.
- W4285357861 hasConcept C35525427 @default.
- W4285357861 hasConcept C41008148 @default.
- W4285357861 hasConcept C50644808 @default.
- W4285357861 hasConcept C58471807 @default.
- W4285357861 hasConceptScore W4285357861C111919701 @default.
- W4285357861 hasConceptScore W4285357861C119857082 @default.
- W4285357861 hasConceptScore W4285357861C124101348 @default.
- W4285357861 hasConceptScore W4285357861C152124472 @default.
- W4285357861 hasConceptScore W4285357861C154945302 @default.
- W4285357861 hasConceptScore W4285357861C35525427 @default.
- W4285357861 hasConceptScore W4285357861C41008148 @default.
- W4285357861 hasConceptScore W4285357861C50644808 @default.
- W4285357861 hasConceptScore W4285357861C58471807 @default.
- W4285357861 hasFunder F4320321001 @default.
- W4285357861 hasLocation W42853578611 @default.
- W4285357861 hasOpenAccess W4285357861 @default.
- W4285357861 hasPrimaryLocation W42853578611 @default.
- W4285357861 hasRelatedWork W191471982 @default.
- W4285357861 hasRelatedWork W2158886567 @default.
- W4285357861 hasRelatedWork W2317692656 @default.
- W4285357861 hasRelatedWork W2366221835 @default.
- W4285357861 hasRelatedWork W2584408238 @default.
- W4285357861 hasRelatedWork W3174196512 @default.
- W4285357861 hasRelatedWork W4205568523 @default.
- W4285357861 hasRelatedWork W4285337355 @default.
- W4285357861 hasRelatedWork W1629725936 @default.
- W4285357861 hasRelatedWork W2189193988 @default.
- W4285357861 isParatext "false" @default.
- W4285357861 isRetracted "false" @default.
- W4285357861 workType "article" @default.