Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285366943> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W4285366943 abstract "<sec> <title>BACKGROUND</title> Web-based crowdfunding has become a popular method to raise money for medical expenses, and there is growing research interest in this topic. However, crowdfunding data are largely composed of unstructured text, thereby posing many challenges for researchers hoping to answer questions about specific medical conditions. Previous studies have used methods that either failed to address major challenges or were poorly scalable to large sample sizes. To enable further research on this emerging funding mechanism in health care, better methods are needed. </sec> <sec> <title>OBJECTIVE</title> We sought to validate an algorithm for identifying 11 disease categories in web-based medical crowdfunding campaigns. We hypothesized that a disease identification algorithm combining a named entity recognition (NER) model and word search approach could identify disease categories with high precision and accuracy. Such an algorithm would facilitate further research using these data. </sec> <sec> <title>METHODS</title> Web scraping was used to collect data on medical crowdfunding campaigns from GoFundMe (GoFundMe Inc). Using pretrained NER and entity resolution models from Spark NLP for Healthcare in combination with targeted keyword searches, we constructed an algorithm to identify conditions in the campaign descriptions, translate conditions to <i>International Classification of Diseases, 10th Revision, Clinical Modification</i> (ICD-10-CM) codes, and predict the presence or absence of 11 disease categories in the campaigns. The classification performance of the algorithm was evaluated against 400 manually labeled campaigns. </sec> <sec> <title>RESULTS</title> We collected data on 89,645 crowdfunding campaigns through web scraping. The interrater reliability for detecting the presence of broad disease categories in the campaign descriptions was high (Cohen κ: range 0.69-0.96). The NER and entity resolution models identified 6594 unique (276,020 total) ICD-10-CM codes among all of the crowdfunding campaigns in our sample. Through our word search, we identified 3261 additional campaigns for which a medical condition was not otherwise detected with the NER model. When averaged across all disease categories and weighted by the number of campaigns that mentioned each disease category, the algorithm demonstrated an overall precision of 0.83 (range 0.48-0.97), a recall of 0.77 (range 0.42-0.98), an <i>F</i><sub>1</sub> score of 0.78 (range 0.56-0.96), and an accuracy of 95% (range 90%-98%). </sec> <sec> <title>CONCLUSIONS</title> A disease identification algorithm combining pretrained natural language processing models and ICD-10-CM code–based disease categorization was able to detect 11 disease categories in medical crowdfunding campaigns with high precision and accuracy. </sec>" @default.
- W4285366943 created "2022-07-14" @default.
- W4285366943 creator A5036672639 @default.
- W4285366943 creator A5037761296 @default.
- W4285366943 creator A5041355589 @default.
- W4285366943 creator A5041740577 @default.
- W4285366943 creator A5085534043 @default.
- W4285366943 date "2021-09-09" @default.
- W4285366943 modified "2023-09-29" @default.
- W4285366943 title "A Disease Identification Algorithm for Medical Crowdfunding Campaigns: Validation Study (Preprint)" @default.
- W4285366943 cites W2168041406 @default.
- W4285366943 cites W2315671882 @default.
- W4285366943 cites W2590462354 @default.
- W4285366943 cites W2768635170 @default.
- W4285366943 cites W2801055364 @default.
- W4285366943 cites W2804586632 @default.
- W4285366943 cites W2952502825 @default.
- W4285366943 cites W2972942864 @default.
- W4285366943 cites W3094473971 @default.
- W4285366943 cites W3120382220 @default.
- W4285366943 cites W3133665323 @default.
- W4285366943 doi "https://doi.org/10.2196/preprints.32867" @default.
- W4285366943 hasPublicationYear "2021" @default.
- W4285366943 type Work @default.
- W4285366943 citedByCount "1" @default.
- W4285366943 countsByYear W42853669432022 @default.
- W4285366943 crossrefType "posted-content" @default.
- W4285366943 hasAuthorship W4285366943A5036672639 @default.
- W4285366943 hasAuthorship W4285366943A5037761296 @default.
- W4285366943 hasAuthorship W4285366943A5041355589 @default.
- W4285366943 hasAuthorship W4285366943A5041740577 @default.
- W4285366943 hasAuthorship W4285366943A5085534043 @default.
- W4285366943 hasBestOaLocation W42853669432 @default.
- W4285366943 hasConcept C11413529 @default.
- W4285366943 hasConcept C116834253 @default.
- W4285366943 hasConcept C119857082 @default.
- W4285366943 hasConcept C124101348 @default.
- W4285366943 hasConcept C154945302 @default.
- W4285366943 hasConcept C23123220 @default.
- W4285366943 hasConcept C41008148 @default.
- W4285366943 hasConcept C48044578 @default.
- W4285366943 hasConcept C59822182 @default.
- W4285366943 hasConcept C77088390 @default.
- W4285366943 hasConcept C86803240 @default.
- W4285366943 hasConceptScore W4285366943C11413529 @default.
- W4285366943 hasConceptScore W4285366943C116834253 @default.
- W4285366943 hasConceptScore W4285366943C119857082 @default.
- W4285366943 hasConceptScore W4285366943C124101348 @default.
- W4285366943 hasConceptScore W4285366943C154945302 @default.
- W4285366943 hasConceptScore W4285366943C23123220 @default.
- W4285366943 hasConceptScore W4285366943C41008148 @default.
- W4285366943 hasConceptScore W4285366943C48044578 @default.
- W4285366943 hasConceptScore W4285366943C59822182 @default.
- W4285366943 hasConceptScore W4285366943C77088390 @default.
- W4285366943 hasConceptScore W4285366943C86803240 @default.
- W4285366943 hasLocation W42853669431 @default.
- W4285366943 hasLocation W42853669432 @default.
- W4285366943 hasOpenAccess W4285366943 @default.
- W4285366943 hasPrimaryLocation W42853669431 @default.
- W4285366943 hasRelatedWork W1525643724 @default.
- W4285366943 hasRelatedWork W2067938758 @default.
- W4285366943 hasRelatedWork W2302028273 @default.
- W4285366943 hasRelatedWork W2333420780 @default.
- W4285366943 hasRelatedWork W2364921833 @default.
- W4285366943 hasRelatedWork W2382623646 @default.
- W4285366943 hasRelatedWork W2388030554 @default.
- W4285366943 hasRelatedWork W2461970972 @default.
- W4285366943 hasRelatedWork W2961085424 @default.
- W4285366943 hasRelatedWork W3087771547 @default.
- W4285366943 isParatext "false" @default.
- W4285366943 isRetracted "false" @default.
- W4285366943 workType "article" @default.