Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285384024> ?p ?o ?g. }
- W4285384024 endingPage "100075" @default.
- W4285384024 startingPage "100075" @default.
- W4285384024 abstract "In recent years, online ride-hailing services have emerged as an important component of urban transportation system, which not only provide significant ease for residents’ travel activities, but also shape new travel behavior and diversify urban mobility patterns. This study provides a thorough review of machine-learning-based methodologies for on-demand ride-hailing services. The importance of on-demand ride-hailing services in the spatio-temporal dynamics of urban traffic is first highlighted, with machine-learning-based macro-level ride-hailing research demonstrating its value in guiding the design, planning, operation, and control of urban intelligent transportation systems. Then, the research on travel behavior from the perspective of individual mobility patterns, including carpooling behavior and modal choice behavior, is summarized. In addition, existing studies on order matching and vehicle dispatching strategies, which are among the most important components of on-line ride-hailing systems, are collected and summarized. Finally, some of the critical challenges and opportunities in ride-hailing services are discussed." @default.
- W4285384024 created "2022-07-14" @default.
- W4285384024 creator A5000140050 @default.
- W4285384024 creator A5010419481 @default.
- W4285384024 creator A5023363049 @default.
- W4285384024 creator A5040302830 @default.
- W4285384024 date "2022-12-01" @default.
- W4285384024 modified "2023-10-16" @default.
- W4285384024 title "How machine learning informs ride-hailing services: A survey" @default.
- W4285384024 cites W1897722333 @default.
- W4285384024 cites W1982978808 @default.
- W4285384024 cites W2000116333 @default.
- W4285384024 cites W2075364600 @default.
- W4285384024 cites W2083238230 @default.
- W4285384024 cites W2093960135 @default.
- W4285384024 cites W2105467573 @default.
- W4285384024 cites W2150010190 @default.
- W4285384024 cites W2190353863 @default.
- W4285384024 cites W2290443447 @default.
- W4285384024 cites W2570113925 @default.
- W4285384024 cites W2695874637 @default.
- W4285384024 cites W2736098799 @default.
- W4285384024 cites W2791202102 @default.
- W4285384024 cites W2799329973 @default.
- W4285384024 cites W2884435112 @default.
- W4285384024 cites W2889125237 @default.
- W4285384024 cites W2900312347 @default.
- W4285384024 cites W2904430055 @default.
- W4285384024 cites W2905257503 @default.
- W4285384024 cites W2906957789 @default.
- W4285384024 cites W2909452395 @default.
- W4285384024 cites W2916204639 @default.
- W4285384024 cites W2945622688 @default.
- W4285384024 cites W2951336360 @default.
- W4285384024 cites W2964068664 @default.
- W4285384024 cites W2968301466 @default.
- W4285384024 cites W2969963183 @default.
- W4285384024 cites W2973897713 @default.
- W4285384024 cites W2981570580 @default.
- W4285384024 cites W2982210950 @default.
- W4285384024 cites W3015976027 @default.
- W4285384024 cites W3017338266 @default.
- W4285384024 cites W3038540520 @default.
- W4285384024 cites W3039360488 @default.
- W4285384024 cites W3042024951 @default.
- W4285384024 cites W3043674345 @default.
- W4285384024 cites W3044971131 @default.
- W4285384024 cites W3085345971 @default.
- W4285384024 cites W3085866332 @default.
- W4285384024 cites W3088562575 @default.
- W4285384024 cites W3096362978 @default.
- W4285384024 cites W3097856848 @default.
- W4285384024 cites W3102889773 @default.
- W4285384024 cites W3108897154 @default.
- W4285384024 cites W3109254449 @default.
- W4285384024 cites W3112483519 @default.
- W4285384024 cites W3113447072 @default.
- W4285384024 cites W3119457309 @default.
- W4285384024 cites W3122391994 @default.
- W4285384024 cites W3129122751 @default.
- W4285384024 cites W3138337643 @default.
- W4285384024 cites W3138970093 @default.
- W4285384024 cites W3142190433 @default.
- W4285384024 cites W3155783780 @default.
- W4285384024 cites W3155957538 @default.
- W4285384024 cites W3166245994 @default.
- W4285384024 cites W3173432211 @default.
- W4285384024 cites W3176172421 @default.
- W4285384024 cites W3176739440 @default.
- W4285384024 cites W3193833382 @default.
- W4285384024 cites W3197004077 @default.
- W4285384024 cites W3204137325 @default.
- W4285384024 cites W3208909450 @default.
- W4285384024 cites W4200461742 @default.
- W4285384024 cites W4205893309 @default.
- W4285384024 cites W4225984100 @default.
- W4285384024 doi "https://doi.org/10.1016/j.commtr.2022.100075" @default.
- W4285384024 hasPublicationYear "2022" @default.
- W4285384024 type Work @default.
- W4285384024 citedByCount "23" @default.
- W4285384024 countsByYear W42853840242022 @default.
- W4285384024 countsByYear W42853840242023 @default.
- W4285384024 crossrefType "journal-article" @default.
- W4285384024 hasAuthorship W4285384024A5000140050 @default.
- W4285384024 hasAuthorship W4285384024A5010419481 @default.
- W4285384024 hasAuthorship W4285384024A5023363049 @default.
- W4285384024 hasAuthorship W4285384024A5040302830 @default.
- W4285384024 hasBestOaLocation W42853840243 @default.
- W4285384024 hasConcept C10138342 @default.
- W4285384024 hasConcept C105795698 @default.
- W4285384024 hasConcept C127413603 @default.
- W4285384024 hasConcept C144072006 @default.
- W4285384024 hasConcept C144133560 @default.
- W4285384024 hasConcept C162853370 @default.
- W4285384024 hasConcept C165064840 @default.
- W4285384024 hasConcept C182306322 @default.
- W4285384024 hasConcept C22212356 @default.
- W4285384024 hasConcept C33923547 @default.