Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285384410> ?p ?o ?g. }
- W4285384410 endingPage "105180" @default.
- W4285384410 startingPage "105180" @default.
- W4285384410 abstract "Soft sensor plays a progressively significant role in modern industrial processes. However, process variables usually have complex distribution characteristics, which can adversely affect the performance of soft sensor. On the other hand, due to the inevitable presence of noise in industrial data, the effect of traditional prediction models based on point estimates are greatly reduced. To address these problems, this article proposes a variation autoencoder (VAE) based neural network for robust soft sensor (VAE4RSS) approach. Specifically, on the basis of reconstructing the process variables by the autoencoder (AE), Gaussian distribution constraints are added to the latent features, and the unfavorable effects of complex distribution characteristics on prediction can be overcome by converting the original data into constrained latent features. Then, in order to reduce the negative effect of outliers, the probability density function (PDF) is introduced to describe the training errors instead of the traditional point estimates, an error PDF optimization based neural network prediction model is established to improve the robustness of soft sensor. Finally, in order to evaluate the efficiency and superiority of the proposed method quantitatively, we conduct extensive experiments on a numerical simulation case and an industrial zinc roasting process case in comparison with several state-of-the-art methods. The experimental results demonstrate that the proposed method exhibits satisfactory prediction results and is robust to outliers." @default.
- W4285384410 created "2022-07-14" @default.
- W4285384410 creator A5029587382 @default.
- W4285384410 creator A5049939311 @default.
- W4285384410 creator A5067558148 @default.
- W4285384410 creator A5071728270 @default.
- W4285384410 creator A5080727476 @default.
- W4285384410 date "2022-09-01" @default.
- W4285384410 modified "2023-10-06" @default.
- W4285384410 title "VAE4RSS: A VAE-based neural network approach for robust soft sensor with application to zinc roasting process" @default.
- W4285384410 cites W2000651380 @default.
- W4285384410 cites W2024539003 @default.
- W4285384410 cites W2126174145 @default.
- W4285384410 cites W2167533984 @default.
- W4285384410 cites W2179190100 @default.
- W4285384410 cites W2320003029 @default.
- W4285384410 cites W2539756354 @default.
- W4285384410 cites W2574981798 @default.
- W4285384410 cites W2593382986 @default.
- W4285384410 cites W2605061423 @default.
- W4285384410 cites W2618410756 @default.
- W4285384410 cites W2757342969 @default.
- W4285384410 cites W2789290525 @default.
- W4285384410 cites W2791332494 @default.
- W4285384410 cites W2889017122 @default.
- W4285384410 cites W2912345712 @default.
- W4285384410 cites W2942496699 @default.
- W4285384410 cites W2953013376 @default.
- W4285384410 cites W2974238426 @default.
- W4285384410 cites W2988720209 @default.
- W4285384410 cites W2991207885 @default.
- W4285384410 cites W3005770546 @default.
- W4285384410 cites W3006189731 @default.
- W4285384410 cites W3026966517 @default.
- W4285384410 cites W3036543470 @default.
- W4285384410 cites W3036721652 @default.
- W4285384410 cites W3041129396 @default.
- W4285384410 cites W3111796587 @default.
- W4285384410 cites W3119704083 @default.
- W4285384410 cites W3123899295 @default.
- W4285384410 cites W3128560880 @default.
- W4285384410 cites W3168729274 @default.
- W4285384410 cites W3171438403 @default.
- W4285384410 cites W3172377110 @default.
- W4285384410 cites W3192982690 @default.
- W4285384410 cites W3207596548 @default.
- W4285384410 doi "https://doi.org/10.1016/j.engappai.2022.105180" @default.
- W4285384410 hasPublicationYear "2022" @default.
- W4285384410 type Work @default.
- W4285384410 citedByCount "7" @default.
- W4285384410 countsByYear W42853844102022 @default.
- W4285384410 countsByYear W42853844102023 @default.
- W4285384410 crossrefType "journal-article" @default.
- W4285384410 hasAuthorship W4285384410A5029587382 @default.
- W4285384410 hasAuthorship W4285384410A5049939311 @default.
- W4285384410 hasAuthorship W4285384410A5067558148 @default.
- W4285384410 hasAuthorship W4285384410A5071728270 @default.
- W4285384410 hasAuthorship W4285384410A5080727476 @default.
- W4285384410 hasConcept C101738243 @default.
- W4285384410 hasConcept C104317684 @default.
- W4285384410 hasConcept C111919701 @default.
- W4285384410 hasConcept C115575686 @default.
- W4285384410 hasConcept C119857082 @default.
- W4285384410 hasConcept C124101348 @default.
- W4285384410 hasConcept C153180895 @default.
- W4285384410 hasConcept C154945302 @default.
- W4285384410 hasConcept C185592680 @default.
- W4285384410 hasConcept C41008148 @default.
- W4285384410 hasConcept C50644808 @default.
- W4285384410 hasConcept C55493867 @default.
- W4285384410 hasConcept C63479239 @default.
- W4285384410 hasConcept C79337645 @default.
- W4285384410 hasConcept C98045186 @default.
- W4285384410 hasConceptScore W4285384410C101738243 @default.
- W4285384410 hasConceptScore W4285384410C104317684 @default.
- W4285384410 hasConceptScore W4285384410C111919701 @default.
- W4285384410 hasConceptScore W4285384410C115575686 @default.
- W4285384410 hasConceptScore W4285384410C119857082 @default.
- W4285384410 hasConceptScore W4285384410C124101348 @default.
- W4285384410 hasConceptScore W4285384410C153180895 @default.
- W4285384410 hasConceptScore W4285384410C154945302 @default.
- W4285384410 hasConceptScore W4285384410C185592680 @default.
- W4285384410 hasConceptScore W4285384410C41008148 @default.
- W4285384410 hasConceptScore W4285384410C50644808 @default.
- W4285384410 hasConceptScore W4285384410C55493867 @default.
- W4285384410 hasConceptScore W4285384410C63479239 @default.
- W4285384410 hasConceptScore W4285384410C79337645 @default.
- W4285384410 hasConceptScore W4285384410C98045186 @default.
- W4285384410 hasLocation W42853844101 @default.
- W4285384410 hasOpenAccess W4285384410 @default.
- W4285384410 hasPrimaryLocation W42853844101 @default.
- W4285384410 hasRelatedWork W2292254049 @default.
- W4285384410 hasRelatedWork W2592385986 @default.
- W4285384410 hasRelatedWork W2897995864 @default.
- W4285384410 hasRelatedWork W2945347109 @default.
- W4285384410 hasRelatedWork W2998168123 @default.
- W4285384410 hasRelatedWork W4226003894 @default.
- W4285384410 hasRelatedWork W4281924768 @default.