Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285384477> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W4285384477 endingPage "105166" @default.
- W4285384477 startingPage "105166" @default.
- W4285384477 abstract "Real-life water quality monitoring applications such as aquaculture domains and water resource management need long range multi-step prediction for disaster control. However, prediction accuracy usually degrades gradually as the prediction target timepoint is further away from the current timepoint. To address this, recent water quality forecasting methods mostly rely on complex deep learning models. In this paper, we propose a simple time-variant iterative ensembling method that strives to significantly improve the performance of a given arbitrary long range multi-step time series predictor for water quality data with minimal increase in computational cost. With the given predictor, our proposed method iteratively uses ensembles of predicted values for preceding steps to improve the prediction accuracy for the succeeding steps. The iterative ensembling operation is performed on the trained model and only at the inference stage, and so does not need any further computing-intensive training for the performance improvement. We experimentally show that the proposed method is effective with 7 predictors and 9 water quality datasets of various types, and it outperforms the state-of-the-art results in those datasets by around 2%–29% in mean absolute error (MAE), root mean squared error (RMSE) and mean absolute percentage error (MAPE) metrics. Similar improvement has also been found in two other metrics such as normalized Nash–Sutcliffe model efficiency coefficient (NNSE) metric and Taylor diagram plot. Overall, the proposed iterative ensembling is a promising approach for multi-step long range water quality prediction for high-frequency water quality monitoring systems." @default.
- W4285384477 created "2022-07-14" @default.
- W4285384477 creator A5021954487 @default.
- W4285384477 creator A5038675407 @default.
- W4285384477 creator A5063220268 @default.
- W4285384477 creator A5072913452 @default.
- W4285384477 creator A5086354302 @default.
- W4285384477 date "2022-09-01" @default.
- W4285384477 modified "2023-10-18" @default.
- W4285384477 title "Long range multi-step water quality forecasting using iterative ensembling" @default.
- W4285384477 cites W2791741962 @default.
- W4285384477 cites W2870507224 @default.
- W4285384477 cites W2889463570 @default.
- W4285384477 cites W2930669685 @default.
- W4285384477 cites W2936399818 @default.
- W4285384477 cites W2944905287 @default.
- W4285384477 cites W2969685114 @default.
- W4285384477 cites W2980994438 @default.
- W4285384477 cites W2991423538 @default.
- W4285384477 cites W2995846871 @default.
- W4285384477 cites W3006101764 @default.
- W4285384477 cites W3008408706 @default.
- W4285384477 cites W3010537613 @default.
- W4285384477 cites W3023775155 @default.
- W4285384477 cites W3030113778 @default.
- W4285384477 cites W3035348935 @default.
- W4285384477 cites W3040007109 @default.
- W4285384477 cites W3046986867 @default.
- W4285384477 cites W3080252818 @default.
- W4285384477 cites W3086048481 @default.
- W4285384477 cites W3128488524 @default.
- W4285384477 cites W3159352807 @default.
- W4285384477 cites W3164775596 @default.
- W4285384477 cites W3171884590 @default.
- W4285384477 cites W3177318507 @default.
- W4285384477 cites W3177731925 @default.
- W4285384477 cites W3190469032 @default.
- W4285384477 cites W3197641978 @default.
- W4285384477 cites W4200270489 @default.
- W4285384477 cites W4205161115 @default.
- W4285384477 cites W4210922522 @default.
- W4285384477 cites W4220666015 @default.
- W4285384477 cites W4220715407 @default.
- W4285384477 cites W4223553247 @default.
- W4285384477 cites W4226183669 @default.
- W4285384477 cites W4226429038 @default.
- W4285384477 cites W4229446061 @default.
- W4285384477 doi "https://doi.org/10.1016/j.engappai.2022.105166" @default.
- W4285384477 hasPublicationYear "2022" @default.
- W4285384477 type Work @default.
- W4285384477 citedByCount "3" @default.
- W4285384477 countsByYear W42853844772022 @default.
- W4285384477 countsByYear W42853844772023 @default.
- W4285384477 crossrefType "journal-article" @default.
- W4285384477 hasAuthorship W4285384477A5021954487 @default.
- W4285384477 hasAuthorship W4285384477A5038675407 @default.
- W4285384477 hasAuthorship W4285384477A5063220268 @default.
- W4285384477 hasAuthorship W4285384477A5072913452 @default.
- W4285384477 hasAuthorship W4285384477A5086354302 @default.
- W4285384477 hasConcept C111472728 @default.
- W4285384477 hasConcept C119857082 @default.
- W4285384477 hasConcept C124101348 @default.
- W4285384477 hasConcept C138885662 @default.
- W4285384477 hasConcept C154945302 @default.
- W4285384477 hasConcept C159985019 @default.
- W4285384477 hasConcept C192562407 @default.
- W4285384477 hasConcept C204323151 @default.
- W4285384477 hasConcept C2779530757 @default.
- W4285384477 hasConcept C41008148 @default.
- W4285384477 hasConceptScore W4285384477C111472728 @default.
- W4285384477 hasConceptScore W4285384477C119857082 @default.
- W4285384477 hasConceptScore W4285384477C124101348 @default.
- W4285384477 hasConceptScore W4285384477C138885662 @default.
- W4285384477 hasConceptScore W4285384477C154945302 @default.
- W4285384477 hasConceptScore W4285384477C159985019 @default.
- W4285384477 hasConceptScore W4285384477C192562407 @default.
- W4285384477 hasConceptScore W4285384477C204323151 @default.
- W4285384477 hasConceptScore W4285384477C2779530757 @default.
- W4285384477 hasConceptScore W4285384477C41008148 @default.
- W4285384477 hasFunder F4320320981 @default.
- W4285384477 hasFunder F4320334704 @default.
- W4285384477 hasLocation W42853844771 @default.
- W4285384477 hasOpenAccess W4285384477 @default.
- W4285384477 hasPrimaryLocation W42853844771 @default.
- W4285384477 hasRelatedWork W2961085424 @default.
- W4285384477 hasRelatedWork W3046775127 @default.
- W4285384477 hasRelatedWork W3170094116 @default.
- W4285384477 hasRelatedWork W3209574120 @default.
- W4285384477 hasRelatedWork W4205958290 @default.
- W4285384477 hasRelatedWork W4285260836 @default.
- W4285384477 hasRelatedWork W4286629047 @default.
- W4285384477 hasRelatedWork W4306321456 @default.
- W4285384477 hasRelatedWork W4306674287 @default.
- W4285384477 hasRelatedWork W4224009465 @default.
- W4285384477 hasVolume "114" @default.
- W4285384477 isParatext "false" @default.
- W4285384477 isRetracted "false" @default.
- W4285384477 workType "article" @default.