Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285384987> ?p ?o ?g. }
- W4285384987 endingPage "107191" @default.
- W4285384987 startingPage "107191" @default.
- W4285384987 abstract "Longan is a famous speciality fruit and cultivated medicinal plant that has important edible and medicinal value; how to improve productivity in harvest is an important issue. At present, longan is mainly planted in hilly areas. For complex site conditions and tall trees, the ground harvesting machineries cannot work normally. In this study, aiming at harvesting longan fruit using unmanned aerial vehicles, a method combining an improved YOLOv5s, improved DeepLabv3+ model and depth image information is proposed, which is used for the three-dimensional (3D) positioning of branch picking points in complex natural environments. First, the improved YOLOv5s model is used to quickly detect longan fruit skewers and the main fruit branches from a complex orchard environment. The correct main fruit branch is obtained according to its relative position relationship and is extracted as the input to the semantic segmentation model. Second, using the improved DeepLabv3+ model, the image extracted in the previous step is semantically segmented to obtain the 2D coordinate information of the main longan fruit branches. Finally, combined with the growth characteristics of a longan fruit string, RGB-D information fusion is carried out on the main fruit branches in 3D space to obtain the central axis and pose information of the main fruit branches, and the 3D coordinates of the picking points are calculated, which provides destination information for a longan harvesting drone. To verify the effectiveness of the proposed method, an experiment for identifying and locating the main fruit branches and picking points was carried out in a longan orchard. The experimental results show that the longan string fruit and main fruit branch detection accuracy is 85.50%, and the main fruit branch semantic segmentation accuracy is 94.52%. The whole algorithm takes 0.58 s in the actual scene and can quickly and accurately locate the picking points. In summary, this paper fully exploits the advantages of the combination of a convolutional neural network and RGB-D image information, further improving the efficiency of longan harvesting drones in accurately positioning picking points in 3D space." @default.
- W4285384987 created "2022-07-14" @default.
- W4285384987 creator A5001648744 @default.
- W4285384987 creator A5006938119 @default.
- W4285384987 creator A5010683100 @default.
- W4285384987 creator A5012114290 @default.
- W4285384987 creator A5012894960 @default.
- W4285384987 creator A5020156280 @default.
- W4285384987 creator A5027835055 @default.
- W4285384987 creator A5042360472 @default.
- W4285384987 creator A5058709349 @default.
- W4285384987 creator A5060112370 @default.
- W4285384987 creator A5061270485 @default.
- W4285384987 date "2022-08-01" @default.
- W4285384987 modified "2023-09-30" @default.
- W4285384987 title "A novel approach for the 3D localization of branch picking points based on deep learning applied to longan harvesting UAVs" @default.
- W4285384987 cites W1975396725 @default.
- W4285384987 cites W2109255472 @default.
- W4285384987 cites W2183182206 @default.
- W4285384987 cites W2412782625 @default.
- W4285384987 cites W2620742659 @default.
- W4285384987 cites W2769210209 @default.
- W4285384987 cites W2788451552 @default.
- W4285384987 cites W2790979755 @default.
- W4285384987 cites W2799437918 @default.
- W4285384987 cites W2808672626 @default.
- W4285384987 cites W2919115771 @default.
- W4285384987 cites W2936307272 @default.
- W4285384987 cites W2940726923 @default.
- W4285384987 cites W2969896545 @default.
- W4285384987 cites W2972346753 @default.
- W4285384987 cites W2991616716 @default.
- W4285384987 cites W2996981924 @default.
- W4285384987 cites W2999278897 @default.
- W4285384987 cites W3011464803 @default.
- W4285384987 cites W3011638763 @default.
- W4285384987 cites W3016611160 @default.
- W4285384987 cites W3022518608 @default.
- W4285384987 cites W3036881055 @default.
- W4285384987 cites W3040274457 @default.
- W4285384987 cites W3042421576 @default.
- W4285384987 cites W3043740003 @default.
- W4285384987 cites W3044607523 @default.
- W4285384987 cites W3065732173 @default.
- W4285384987 cites W3111134030 @default.
- W4285384987 cites W3115555568 @default.
- W4285384987 cites W3120761267 @default.
- W4285384987 cites W3126031428 @default.
- W4285384987 cites W3130900697 @default.
- W4285384987 cites W3134370624 @default.
- W4285384987 cites W3194753766 @default.
- W4285384987 cites W3202964170 @default.
- W4285384987 cites W639708223 @default.
- W4285384987 doi "https://doi.org/10.1016/j.compag.2022.107191" @default.
- W4285384987 hasPublicationYear "2022" @default.
- W4285384987 type Work @default.
- W4285384987 citedByCount "7" @default.
- W4285384987 countsByYear W42853849872022 @default.
- W4285384987 countsByYear W42853849872023 @default.
- W4285384987 crossrefType "journal-article" @default.
- W4285384987 hasAuthorship W4285384987A5001648744 @default.
- W4285384987 hasAuthorship W4285384987A5006938119 @default.
- W4285384987 hasAuthorship W4285384987A5010683100 @default.
- W4285384987 hasAuthorship W4285384987A5012114290 @default.
- W4285384987 hasAuthorship W4285384987A5012894960 @default.
- W4285384987 hasAuthorship W4285384987A5020156280 @default.
- W4285384987 hasAuthorship W4285384987A5027835055 @default.
- W4285384987 hasAuthorship W4285384987A5042360472 @default.
- W4285384987 hasAuthorship W4285384987A5058709349 @default.
- W4285384987 hasAuthorship W4285384987A5060112370 @default.
- W4285384987 hasAuthorship W4285384987A5061270485 @default.
- W4285384987 hasConcept C144027150 @default.
- W4285384987 hasConcept C154945302 @default.
- W4285384987 hasConcept C2780753983 @default.
- W4285384987 hasConcept C31972630 @default.
- W4285384987 hasConcept C33923547 @default.
- W4285384987 hasConcept C41008148 @default.
- W4285384987 hasConcept C82990744 @default.
- W4285384987 hasConcept C86803240 @default.
- W4285384987 hasConcept C89600930 @default.
- W4285384987 hasConceptScore W4285384987C144027150 @default.
- W4285384987 hasConceptScore W4285384987C154945302 @default.
- W4285384987 hasConceptScore W4285384987C2780753983 @default.
- W4285384987 hasConceptScore W4285384987C31972630 @default.
- W4285384987 hasConceptScore W4285384987C33923547 @default.
- W4285384987 hasConceptScore W4285384987C41008148 @default.
- W4285384987 hasConceptScore W4285384987C82990744 @default.
- W4285384987 hasConceptScore W4285384987C86803240 @default.
- W4285384987 hasConceptScore W4285384987C89600930 @default.
- W4285384987 hasLocation W42853849871 @default.
- W4285384987 hasOpenAccess W4285384987 @default.
- W4285384987 hasPrimaryLocation W42853849871 @default.
- W4285384987 hasRelatedWork W1669643531 @default.
- W4285384987 hasRelatedWork W2005437358 @default.
- W4285384987 hasRelatedWork W2052518016 @default.
- W4285384987 hasRelatedWork W2134924024 @default.
- W4285384987 hasRelatedWork W2283162247 @default.
- W4285384987 hasRelatedWork W2517104666 @default.